

Tim Chupp
Recommended Reading; 2021 Summary by Chen-Yu (Les Houches) https://lpsc-indico.in2p3.fr/event/2584/contributions/5103/

Thanks to!

- International committee: Bernhard Lauss, Brad Filippone, Jeff Martin
- Local oragnizers: Steven, Nguyen, Chen-Yu, TC
- Session chairs: Russ M, Brad P., Georg B, Bernhard, Jeff M., Austin, Wolfgang S., Andy S., Shinsuke, Steven C, Nguyen, Chen-Yu

Tito

MOST SPECIAL THANKS TO

Carrie Talus
Vanessa Tapia

Georgia O'keefe: Jimson Weed (Datura stramonium)

By the numbers

- 70 Participants
- 52 Contributions - 2 plenary talks; 4 overview talks
- 7 Coffee breaks - 30 minutes!
- 5 experiments/labs (full coverage or our field)
- 1 Bob
- 0 measured with grater and greater precision - Peter Geltenbort

Measure 0?

4,000,000 UCN/fill from Super Sun (Estelle)
10,000 MSR Shielding factor @ low ffor TWO MSRs! (Maedeh)
54 Tiles of n2EDM active shield
7 layers of n2EDM MSR and 7th-order gradient corrections
$10^{-11} \mathrm{~T}$ residual field in MSR (Felicity)
$10^{-14} \mathrm{~T}$ minimum from Cs magnetometer (Victoria)
0 e-cm $\pm \ldots$... (Stephanie)

Dirac "discovered" EDMs

The Quantum Theory of the Electron.

By P. A. M. Dirac, St. John's College, Cambridge.
(Communicated by R. H. Fowler, F.R.S.-Received January 2, 1928.)

$$
\left[-\left(p_{0}+e^{\prime} \mathbf{A}_{0}\right)^{2}+\left(\mathbf{p}+e^{\prime} \mathbf{A}\right)^{2}+m^{2} c^{2}+e^{\prime} h(\sigma, \mathbf{H})+i e^{\prime} h \rho_{1}(\sigma, \mathbf{E})\right] \psi=0
$$

The electron will therefore behave as though it has a magnetic moment eh/2mc. σ and an electric moment ieh/2mc. $\rho_{1} \sigma$. This magnetic moment is just that assumed in the spinning electron model. The electric moment, being a pure imaginary, we should not expect to appear in the model. It is doubtful whether the electric moment has any physical meaning, since the Hamiltonian in (14) that we started from is real, and the imaginary part only appeared when we multiplied it up in an artificial way in order to make it resemble the Hamiltonian of previous theories.

$$
H=-\vec{\mu} \cdot \vec{B}-\vec{d} \cdot \vec{E}=-\mu \vec{J} \cdot \vec{B}-d \vec{J} \cdot \vec{E}
$$

Where we (nEDM) stand

EDMs and BSM physics

2017
2018 (8x)

2023 (8 x)($90 \% \mathrm{cl}$)
2020 (1.6x)
2017 (4x)
2019 (5x)
2016

Los Alamos

CPV with Atoms and Molecules - Hutzler

Atoms and molecules have large internal fields...

... which amplify signals from electronic and hadronic CPV

Many experiments are needed to explore the complex CPV parameter space
$\left(d_{e}, C_{S}, \theta_{Q C D}, g_{i}, d_{q}, \tilde{d}_{q}, \ldots\right)$

Many experiments are ongoing, and many new ones are underway!

Where we (nEDM) stand

EDM's probe TeV scale physics (dimension 6)

NATIONAL LABORATORY

$$
\begin{aligned}
& \mu \approx \frac{e \hbar}{2 m} \quad\left(\alpha=\frac{e^{2}}{\hbar c}\right) \\
& \frac{d}{\mu} \approx f^{2 N}\left(\frac{m_{q}}{m_{X}}\right)^{2} \sin \phi \\
& \approx \alpha \\
& \approx 10^{-14} \\
& m_{X} \approx m_{q} \sqrt{10^{14} \alpha^{N}} \approx \text { \#loops } \\
& \sim 10+\mathrm{TeV} \text { LHC scale } \\
& \quad \text { or } \phi \text { is small }
\end{aligned}
$$

M Ways to organize a workshop wrap-up

- by collaboration (see overview talks)
- by T-shirt

- by technical topic
sources, guides, chambers, polarimetry, (co)magnetometers, MSRs, HV, simulations/systematics, analysis/blinding
- by participants

Hide results to seek the truth

- Youth
- Diversity
- Talent
- Ambition
- Community

We don't know how large an nEDM nature is hiding from us, but if it's >10-28 e-cm YOU will find it.

nEDM 2026

The Genesis Committee Meets Again - Tim Chupp

The Genesis committee was meeting again. The "And?"
frequency of these meetings always increased as the deadline for unveiling the next universe approached. Much had already been settled the basic building blocks, the forces between them, the spontaneous generation of ratios - all were routine.

So now it was time to make sure it would all work together. Too many times a new universe had just fizzled and turned into nothing more than it started with.
How boring!
The chair called on the first simulations group to report. "And there's one successful case They figured "Not yet," it out!"
A gasp emerged from everyone, except the "Group two?" chair.
"Well we've been running this, and there's something we've never seen before in replicating life forms: some sort of intelligence."
"What do you mean?"
"Well they seem to learn, to investigate, to assemble things - edifices, machines."
"And then they destroy everything they built. It seems that is the inevitable purpose"
"That's intelligence?"
"Well we have seen rare cases of collective efforts to figure it all out."
"And?" (This seems to be the chair's favorite word - used knowing that there is always more, out. "Nothing?"
always something new from the next random simulation.) of cases!"
"Of course it's bound to happen. Should we
make it harder?" Murmurs of ascent followed as
the chair turned to the initial conditions group. "We don't have time for that," said the chair, "Double the number of basic building blocks; "let's wrap this one up. It's time to move on to randomize the masses."
"Same forces?"
"Sure - give it a whirl." The simulations groups got busy and shortly someone called out, "Got one - a complete revelation."
"Hmm that was fast," mused the chair," Okay add another generation - and another force - a weak one - that will slow things down." The silence endured, and after what seemed like an eternity, the chair again spoke
"Group one report."
"Nope, but we haven't even run the first Infinity

