Overview of the PanEDM experiment at SuperSUN

nEDM2023, Santa Fe November 6, 2023

Skyler Degenkolb, Universität Heidelberg

Institut Laue-Langevin (ILL)

Institut Laue-Langevin (ILL)

Neutron Delivery to SuperSUN

The SuperSUN-PanEDM Installation

tapered octagonal guide: J. Neutron Research 20(4), 117-122 (2018)

Vac. pumps

SP UCN optics

MSR

SuperSUN: High density UCN source

Phase I characterization Measurement agrees with expectation (48 MW) cf. EPJ Conf. 219, 02006 (2019)

Total UCN output: 3.8×10^{6} (integral of blue peak) Source density: 270 UCN/cm³ Long storage times: 126000 UCN remaining after 20min Expected density in PanEDM: 3.9 UCN/cm³ (58 MW) Source characterization, PanEDM commissioning ongoing

Phase II expectation

Peak field:	2.1 T
Source density:	1670 UCN/cm ³ (x5 gain)
Density in PanEDM:	40 UCN/cm ³ (x10 gain)

Photo credit:

Ecliptique – Laurent Thion.

Comparison to the prototype source SUN2

SuperSUN: High density UCN source

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Phase I characterization Measurement agrees with expectation (48 MW) cf. EPJ Conf. 219, 02006 (2019)

Total UCN output: 3.8×10⁶ (integral of blue peak)

EPJ Web of Conferences **219**, 02006 (2019) *PPNS 2018*

The PanEDM neutron electric dipole moment experiment at the ILL

David Wurm¹, *Douglas H.* Beck², *Tim* Chupp³, *Skyler* Degenkolb^{4,a}, *Katharina* Fierlinger¹, *Peter* Fierlinger¹, *Hanno* Filter¹, *Sergey* Ivanov⁵, *Christopher* Klau¹, *Michael* Kreuz⁴, *Eddy* Lelièvre-Berna⁴, *Tobias* Lins¹, *Joachim* Meichelböck¹, *Thomas* Neulinger², *Robert* Paddock⁶, *Florian* Röhrer¹, *Martin* Rosner¹, *Anatolii P.* Serebrov⁵, *Jaideep Taggart* Singh⁷, *Rainer* Stoepler¹, *Stefan* Stuiber¹, *Michael* Sturm¹, *Bernd* Taubenheim¹, *Xavier* Tonon⁴, *Mark* Tucker⁸, *Maurits* van der Grinten⁸, and *Oliver* Zimmer⁴

Ongoing work: spectrum, transfer efficiency and storage in external volumes, etc...

Photo credit:

Ecliptique – Laurent Thion.

by material walls only, and a similar spectrum is expected. The converter volume is 12 liters (three times larger than in SUN2); scaling for this and the brighter cold beam implies a production rate on the order of 10^5 s^{-1} . At saturation, a total of 4×10^6 stored UCN is predicted (330 cm⁻³).

60000

https://doi.org/10.1051/epjconf/201921902006

3.8×10⁶ UCN measured (fill-and-empty)

NEUTRONS

FOR SCIENCE

Comparison to the prototype source SUN2

SuperSUN

SUN2

SuperSUN phase II: polarized UCN and magnetic storage

SUN

Benefits in phase II

- Increase storage potential for one spin state
- Decrease loss rate for stored UCN
- ightarrow UCN already polarized within the source

Phase II expectations (gain over phase I)

Peak field:2.1 TSource density:1670 UCN/cm³ (x5 gain)Density in PanEDM:40 UCN/cm³ (x10 gain)

Status

Quench protection validated Octupole trained up to 1 T Preparing impregnation of the octupole, to reach nominal field

UCN from Superfluid ⁴He: Flux vs. Density

The need for UCN R&D facilities: using SUN-2

"Suniño" test vessel: J. Hingerl, MSc. 2019 Storage measurements: T. Neulinger, PhD 2021

CYTOPTM as a UCN wall coating

T. Neulinger, PhD 2021

Eur. Phys. J. A 58: 141 (2022)

Soft Energy Spectra from ⁴He sources*

*Time-of-flight measurements come with some caveats

EPJ Conf. 219, 02006 (2019)

- Double chamber Ramsey interferometer at room temperature (but $T_{UCN} \sim 5$ mK)
- ¹⁹⁹Hg magnetometers with few-fT resolution
- Cs magnetometers (also at high voltage)
- Magnetic shielding factor: 6×10⁶ at 1 mHz
- Simultaneous spin detection for up/down
- SuperSUN UCN source at ILL in 2 phases: Phase I: unpolarized UCN with 80 neV peak Phase II: polarized UCN, magnetic storage
- Ongoing installation of parts, commissioning with UCN ongoing in 2023-2024

Statistical sensitivity:Frequency measurement:
$$\sigma(d_n) \gtrsim \frac{\hbar}{2\alpha |\mathbf{E}| T \sqrt{N}}$$
 $|\delta \omega| = \frac{|dE|}{\hbar F}$

SuperSUN	Phase I				
Saturated source					
density [cm ⁻³]	330				
Diluted density [cm ⁻³]	63				
Density in cells [cm ⁻³]	3.9				
PanEDM Sensitivity [1	$\sigma, e \text{ cm}]$				
Per run	5.5×10^{-25}				
Per day	3.8×10^{-26}				
Per 100 days	3.8×10^{-27}				

EPJ Conf. 219, 02006 (2019)

Brighter UCN Sources vs. Lower Losses

Statistical sensitivity:	Frequency measurement:
$\sigma(d_n) \gtrsim \frac{\hbar}{2\alpha \mathbf{E} T \sqrt{N}}$	$ \delta\omega = \frac{ dE }{\hbar F}$

SuperSUN	Phase I
Saturated source	
density [cm ⁻³]	330
Diluted density [cm ⁻³]	63
Density in cells [cm ⁻³]	3.9
PanEDM Sensitivity [1	$\sigma, e \text{ cm}]$
Per run	5.5×10^{-25}
Per day	3.8×10^{-26}
Per 100 days	3.8×10^{-27}

|E| ≈ 2 MV/m *T* ≈ 250 s α ≈ 0.85

Transfer loss including dilution: 97-99% for filling

D. Wurm, PhD 2021

The recipe for an EDM measurement:

	prep	aration	Ramsey cycle				counting		
duration [s]	30	80	80	110	60		0 30		50
neutron beam	on		off			on			
3-way switch	vac	fill →	source ¬ detectors		d	detectors 🔽 cells			
vac. pumping	cells		guides						
cell valves	C	pen	closed			open			
spin flipper 1/2			various stability tests				1†	2↓	1↓ 2↑
Ramsey pulses			90° 180° 90			90°			
Hg magnet.		pumping	ing measure			syst. tests			
UCN detection	background, detector & souce - stability UCN cnt			l cnt					
B. field	set								
D ₀ neid	300	incusure							
E field	ram	ρ	HV at setpoint						

D. Wurm, PhD 2021

1: EDM cells	2: Vac. Chan
3: HV feed	4: B ₀ & B ₁ co
5: Inner shield	6: Outer shie
7: Outer shield door	

nber oil eld

PanEDM @ ILL, 2021

PanEDM @ ILL, 2021

PanEDM @ ILL, 2021

Now with biological shielding in place, and a measurement setup mounted:

The need for UCN R&D facilities: using PF2

Transitioning to SuperSUN

Statistics considerations

- Flux vs. *density*
 - want to count many UCN, after storage
 - transport losses and dilution
- Storage time (including T_1/T_2)
- Total measurement time/repetitions
 - duty factor vs. accumulation time
 - long-term stability becomes important
- Polarization (incl. analyzing power)
- Electric field
- Cold neutron losses

Transitioning to SuperSUN: lower cells

Statistics considerations

- Flux vs. *density*
 - want to count many UCN, after storage
 - transport losses and dilution
- Storage time (including T_1/T_2)
- Total measurement time/repetitions
 - duty factor vs. accumulation time
 - long-term stability becomes important
- Polarization (incl. analyzing power)
- Electric field
- Cold neutron losses

Cesium Magnetometry

Cesium Magnetometry

- Below 50 fT stability between 70 - 600 seconds integration
- Using a SQUID-stabilized bias field at BMSR-2, PTB Berlin
- For >100 s integration, limited by field drifts
- Compatible with longer holding times in EDM cycles

Appl. Phys. Lett. 120, 161102 (2022)

Comagnetometry: PanEDM phase I

- Cell dimensions match the ~250s holding time for UCN
- 12 fT sensitivity in 100s
- Need 4 fT differential across the stack, for phase I
- Ultimately need global gradients below ~300 pT/m
- Local dipoles below 2 pT at 3cm
- Challenging to constrain HVcorrelated local dipoles without long measurements

EDM Workshop in Trento: 4-8 March, 2024

EDMs: complementary experiments and theory connections

Organizers:

Skyler Degenkolb (U. Heidelberg) Robert Berger (U. Marburg) Jordy de Vries (U. Amsterdam/Nikhef) Guillaume Pignol (LPSC Grenoble) Philipp Schmidt-Wellenburg (PSI) Bira van Kolck (IJCLab / U. Arizona)

Allied event: INT Program INT-24-1 at U. Washington

Permanent electric dipole moments (EDMs) provide a key experimental test of Standard Model CP-violation, and a means to search for and constrain the new physics processes needed to explain our universe's observed matter-antimatter asymmetry. This motivation and impact on high-energy physics unites EDM research, which nevertheless relies on a diverse set of experimental methods and theoretical tools to fully develop its potential. This workshop is based in a European initiative to identify and strengthen connections among the groups pursuing improved measurements and calculations, as well as conceptual bridges such as phenomenology and global analysis. The major classes of experimental systems are represented (leptons, hadrons, bare nuclei, diamagnetic and paramagnetic atoms and molecules), and key theoretical topics for the interpretation of experimental results are emphasized (nuclear DFT, lattice QCD, atomic and molecular structure, chiral EFT) in addition to dedicated calculations of observables arising from specific models.

Other Heidelberg EDM activities

¹²⁹Xe EDM and magnetometry

WE WANT TO HIRE YOU TO WRITE ON OUR COMPUTERS. WE CAN OFFER YOU A BUNCH OF PAYCHECKS! THERE ARE GHOOTS HERE.

xkcd.com

Questions?

what-if.xkcd.com

Special thanks to:

SuperSUN-PanEDM collaboration Institut Laue-Langevin, NPP division Institut Laue-Langevin, SANE division Technical staff: ILL, HD, TUM, ...

S-DH, GmbH

Reminder, for more on SuperSUN: → See Estelle's talk, today at 17:05

Current PanEDM Contributors

Skyler Degenkolb^{*}, Lukas Dimmler, Husain Manasawala, Kseniia Svirina *[also ILL]*, Felix Waldherr *Universität Heidelberg*

Eric Bourgeat-Lami, Estelle Chanel, Clément Desalme, Hanno Filter, Eddy Lelièvre-Berna, Xavier Tonon, Oliver Zimmer Institut Laue-Langevin, Grenoble, France

Katharina Fierlinger, Peter Fierlinger^{*}, Robert Georgii, Lucas Hopf, Luca Kaess, Florian Kuchler, Leonard Romano, Martin Rosner *Technische Universität München, Garching, Germany*

Simon Stellmer Universität Bonn

Douglas Beck Department of Physics, University of Illinois, Urbana IL, USA

Mark Tucker, Maurits van der Grinten, STFC Rutherford Appleton Laboratory (RAL), Didcot, UK

Tim Chupp Department of Physics, University of Michigan, Ann Arbor MI, USA

*cospokespersons

Elements of the SuperSUN-PanEDM Interface

Comagnetometry

$$\hbar(\omega_+ - \omega_-) = 4dE$$

... up to drift, gradients, etc.

Statistics considerations

Statistics

- Flux vs. *density*
 - want to count many UCN, after storage
 - transport losses and dilution
- Storage time (including T_1/T_2)
- Total measurement time/repetitions
 - duty factor vs. accumulation time
 - long-term stability becomes important
- Polarization (incl. analyzing power)
- Electric field
- Cold neutron losses

$$N_{\text{cell}} \sim \rho_{\text{cell}} V_{\text{cell}} \sim \frac{\rho_{\text{source}} V_{\text{cell}}}{1 + \frac{V_{\text{cell}} + V_{\text{guide}}}{V_{\text{source}}}}$$
$$\frac{1}{\tau} = \frac{1}{\tau_{\beta}} + \frac{1}{\tau_{\text{up}}} + \frac{1}{\tau_{\text{capture}}} + \frac{1}{\tau_{\text{wall}}} + \frac{1}{\tau_{\text{wall}}} + \cdots$$

⁷up

Systematics (not exhaustive)

- Cell size and quality
- Field stability, monitor quality
- Magnetic screening
- Environment/backgrounds

Minimizing UCN Storage losses

 ${\rm E}_{\rm UCN}$ in neV

Phys. Rev. C **92**: 015501 (2015)

Minimizing UCN Storage losses

PHYSICAL REVIEW C 92, 015501 (2015)

Minimizing UCN Storage losses

SuperSUN Neutron Source: Cutaway

Demonstrated 100mW cooling power at 0.6 K

SuperSUN Neutron Source: Cutaway

UCN out

Statistics: our biggest challenge

The next generation*... scaling up!

"Quantum Sensing": Spin and Energy (EFFF)

Some Neutron Guides

Neutron Guides

