## Cavallo high voltage multiplier for the nEDM@SNS experiment

Steven Clayton, LANL

November 9, 2023

nEDM2023, Santa Fe, New Mexico

#### Feeding 650 kV into a LHe cryostat from outside is difficult



- HV generation
  - Requires a large device
- HV vacuum feedthrough
  - It is impossible to make a HV vacuum feedthrough that meets all the nEDM@SNS requirements related to:
    - Sub-K cryogenics
    - Compatibility with SQUID operation
    - Non-magnetism
    - Limited physical size
- Note: we need very little power
  - Leakage current << 1 nA
  - Charged particles caused by n beam

## Methods to produce high voltage

- Van de Graff
- Cockcroft-Walton/Greinacher
- Marx Generator
- .
- Most are not suitable for cryogenic operation (doesn't work, or produces too much heat)
  - Heat from friction
  - Diode operation at <1 Kelvin
  - Heat from moving charge across diode drops

• ...



## 11 В С Α $C_{\rm CD} \simeq 200 \, \rm pF$ dominated by **Ground** contact the electrometer cable Cable to Keithley 617 electrometer



### Prediction of Voltages

Expression in terms of mutual capacitances  $C_{ij}$ :  $Q_B = C_{AB}(V_B - V_A) + C_{BC}(V_B - V_C) + C_{BG}V_B$ ,  $Q_C = C_{BC}(V_C - V_B) + C_{CG}V_C$ ,

$$-\frac{V_{C}^{c}}{V_{A}} = \frac{C_{AB}^{a} - C_{AB}^{c}}{C_{BG}^{c} + C_{AB}^{c} + \kappa C_{BC}^{a}} \equiv G^{\max}, \text{ where } \kappa \equiv C_{CG}^{c} / (C_{CG}^{a} + C_{BC}^{a})$$





Infinite parallel plate capacitor model:  $C_{ij} = \varepsilon_0 A / |x_i - x_j|$ 

$$---- V_B$$

S.M. Clayton et al. JINST **13** P05017 (2018)

### Prediction of Voltages

Expression in terms of mutual capacitances  $C_{ij}$ :  $Q_B = C_{AB}(V_B - V_A) + C_{BC}(V_B - V_C) + C_{BG}V_B,$   $Q_C = C_{BC}(V_C - V_B) + C_{CG}V_C,$  $V_C^{1,\max} = C_{AB}^a - C_{AB}^c$ 

$$-\frac{V_C^{a,\text{max}}}{V_A} = \frac{C_{AB}^a - C_{AB}^c}{C_{BG}^c + C_{AB}^c + \kappa C_{BC}^a} \equiv G^{\text{max}}, \text{ where } \kappa \equiv C_{CG}^c / (C_{CG}^a + C_{BC}^a)$$





Infinite parallel plate capacitor model:  $C_{ij} = \varepsilon_0 A / |x_i - x_j|$ 

S.M. Clayton et al. JINST **13** P05017 (2018)

### Room temperature demonstrator



### nEDM@SNS experiment



## Full scale cryogenic prototype



- Maximize the voltage gain
- Minimize the probability of electrical breakdown



### Cryogenic Cavallo Simulations



# Assembly of full-scale cryogenic prototype





Field mill for non-contact voltage measurement in Cavallo test stand



"3-Hole-Punch"







# Test of the full-scale cryogenic prototype at room temperature in vacuum



problem was traced to an incorrect

material used for the standoffs.

# 2<sup>nd</sup> Test of the full-scale cryogenic prototype at room temperature in vacuum

New problems were revealed:



### Next steps

- Repeat HV amplification test in room temperature vacuum with an input voltage of up to 25 kV
  - Improve vacuum
  - Add diagnostics (monitor currents induced on ground ring and "D" electrode)
  - Also: Try SF6 environment
- Develop cryogenic field mill and alternatives
- Test cooldown of upper cryostat (1K pot)
- Install the Cavallo electrodes in the test cryostat
- Cooldown the cryostat and perform HV amplification test in liquid helium

### Cavallo team and friends



- Marie Blatnik Caltech graduate student (front row, 2<sup>nd</sup> from left)
- Steven Clayton work package leader (back row, left)
- Takeyasu Ito scientist (front row, left)
- Alex Jacobs summer student from Santa Fe Prep (middle row, right)
- Anh-Thai Le summer student from Yale (middle row, 2<sup>nd</sup> from right)
- Mark Makela deputy group leader (not in the photo)
- Chris O'Shaughnessy engineer (not in the photo)
- Eric Renner engineer (middle row, left)
- Isaac Smythe post-bac (back row, right)
- Theresa Sandborn post-bac (front row, middle)
- T.J. Schaub research Technologist (not in the photo)
- Jason Surbrook postdoc (not in the photo)
- Wade Uhrich research technologist (not in the photo)

## Extra Slides





### Non-Contact Voltage Measurement



• In this study, the reference plate voltage was fixed at 0 V (open-loop operation)

Moving plate: Cuclad G10 (now a 1 ¼" disc; old plate shown here)

- Reference plate
- G10 rod down to actuator

Piezo actuator (here, operated with  $\approx 40 \mu m$ stroke, 40 Hz sine wave excitation, so  $Max |v_{plate}| = 0.5$ cm/s)



### Spark Energy in Toy Model



#### Assumptions:

- spark at 5-mm gap
- |*V*<sub>A</sub>|=50 kV

## Maximum energy available to a spark: $\Delta W$ (before – after spark)



### Other Sources of Heat

- Charge flow across resistive electrode surfaces
  - $W_q \sim \Delta t \ I^2 R \sim R Q_B^2 / \Delta t$
  - If  $R \sim 1 \text{ k}\Omega$ ,  $Q_{\text{B}} \sim 1 \mu\text{C}$ , and  $\Delta t \sim 1 \text{ s}$ ,  $\rightarrow W_q \sim 1 \text{ nJ}$
- Turbulent flow around B electrode
  - Scale experimental results of small sphere oscillating in He-II at 0.3 K, M. Niemetz and W. Schoepe, J. Low Temp. Phys. 135 447 (2004).

• Force 
$$F_D = (c_D \rho A/2)v^2 - F_0$$

If v=3 cm/s, the estimate is
P<sub>D</sub>~0.1 mW for ~10 cm radius disc.



#### FIELD MILL PROGRAM: NO-CONTACT HIGH VOLTAGE MEASUREMENT DEVICE





"Waffle"