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High voltage in the SNS nEDM experiment
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HV system development tracks
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High voltage multiplication development track 
(see Cavallo talk)

(focus of this talk)
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Electrode development
Understanding breakdown phenomenon:

• What is the HV breakdown mechanism in liquid 
helium?

• What parameters affect breakdown?
• Electrode material, surface condition, size, temperature, 

pressure,….

• What should the operational parameters for the 
HV system in the nEDM experiment be?
• How high can/should we go?  What is the breakdown 

probability?

Requirements of the experiment:

• Sustain 635 kV (75 kV/cm inside measurement 
cells) over long time period.

• Compatible with Cavallo multiplier operation 
(robust, durable).

• Compatible with SQUID & dressed spin 
operation. 
• Constraint on resistivity of electrode material

• Low backgrounds: neutron activation

• Non-magnetic material

• Fabrication: electrodes are scalable to final size 
& shape.  Surface properties can be well 
controlled.
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Experimental apparatuses for HV studies at LANL

Small Scale

Electrode size: ~1 cm2 Electrode size: ~100 cm2

Medium Scale 
(Non-active device)

Large Scale  
(Legacy device)

Half Scale

Electrode size: ~1000 cm2 Electrode size: ~1000 cm2

Increasing electrode area
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High voltage breakdown data

• For a set of electrodes at a 
fixed temperature and 
pressure:

• Ramp voltage from zero 
until a breakdown occurs.

• Record the breakdown 
voltage.

• Repeat process to 
accumulate distribution.

• Change temperature, 
pressure, or electrodes and 
repeat the process.

Data acquisition procedure:

Phan et al., J. Appl. Phys. 129, 083301 (2021), arXiv:2011.08844

Electropolished

Sample breakdown field distributions 
from the Small-Scale HV system

Central volume

Ground plane 
electrode

HV electrode

Liquid helium filled 
volume

Small-Scale High Voltage 
Apparatus

Data acquired by Wanchun Wei
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Summary of findings

SSHV data
• Breakdown field is primarily dependent on the 

pressure on the liquid.
• Small temperature dependence.
• Higher breakdown fields for electro-polished 

electrodes vs mechanically-polished.

Additional questions:
• Explanation for pressure dependence?
• How does breakdown field scale with electrode area?
• Breakdown field for complex electrode geometry?
• Where should the operating voltage be set at?
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New analysis approach

𝑆𝑆 �𝑊𝑊 = − ln(1 − �𝑃𝑃𝑏𝑏) 

𝑃𝑃𝑏𝑏 𝐸𝐸 = 1 − 𝑒𝑒−𝑆𝑆𝑆𝑆(𝐸𝐸)

𝑃𝑃𝑠𝑠 𝐸𝐸 = 𝑒𝑒−𝑆𝑆𝑆𝑆(𝐸𝐸)

1a)

1b)
2)

Cumulative breakdown distribution:

Survival function:

Cumulative 
“Hazard function”

Unbinned analysis  more information

{Data: set of breakdown fields/voltages}0)
• Underlying distribution 

unknown
• Loss of info from binning
• Difficult to analyze

Weibull (1939, 1951)
Choulkov(2005) 
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Connection to field emission

The hazard function is very evocative of Fowler-Nordheim field emission:

Fowler-Nordheim plot

𝐼𝐼𝐹𝐹𝐹𝐹(𝐸𝐸) = 𝐴𝐴𝑒𝑒
𝐶𝐶
𝜑𝜑
𝐺𝐺𝜑𝜑

−12(𝛽𝛽𝐸𝐸)2exp(−𝐷𝐷𝜑𝜑
3/2

𝛽𝛽𝐸𝐸 )

𝛽𝛽 obtained 
from fit: 1640

Similar to what is found for 
vacuum field emission of SS 
electrodes (𝛽𝛽 = 200-1000)
BastaniNejad et al. (2015)

𝛽𝛽: field enhancement factor
𝜑𝜑: work function
C, D, G: constants

Dataset 53
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Analysis approach

• Can predict how the breakdown field scales with the area of the electrodes.
• Can apply the same analysis method to breakdown data acquired in other noble liquids 
(e.g., argon, xenon).

• Can determine the probability of breakdown for an arbitrary shaped electrode.
• Can optimize electrode shape to maximize survival probability.

• In contrast, traditional approach is to reduce the maximum surface field.
• Provides a gauge to set acceptable operational parameters to minimize risk of 
breakdown/failure.
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Breakdown field scaling with electrode area

Predicted scaling curves use 
only this single data band

• Liquid helium • Liquid argon

LAr data taken from Acciarri et al., JINST 9, P11001 
(2014).
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Breakdown probability for arbitrarily shaped electrodes

1 MV potential difference

Electropolished
electrodes

Mechanical-polished
electrodes

kV/cm

Cumulative hazard 
function {electrode type, 
experimental conditions 
(pressure, temperature, 
etc.)}

Experimental input: 
cumulative hazard 
function

Simulation input: field 
distribution on electrode 
surfaces

Prediction: breakdown 
probability vs field/voltage
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Electrode material considerations

• Electrical
• Resistivity
• Work function

• Magnetic
• Nuclear

• Neutron activation
• Mechanical

• Uniformity
• Smoothness
• Deposition
• Adhesion

• Fabrication

Properties to consider

(Most stringent constraint)
Two types of materials:
• Bulk conductive material
• Conductive coating on non-conductive substrate

Challenges:
• Bulk material – meeting resistivity requirements at 0.4 K
• Coating – electrical & mechanical
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Electrode material: Resistivity requirements

• Minimum electrode resistivity for nEDM@SNS comes from two considerations:
1. Eddy current heating:  Heat from the dressing field less than 6 mW.

• Bulk material:  𝜌𝜌𝑣𝑣 > 1.42 × 10−4 Ω � 𝑚𝑚

• Thin film coating:  𝜌𝜌𝑠𝑠 > 0.013 ⁄Ω □

2.   Magnetic Johnson noise:  Sufficiently low noise level ( 𝛿𝛿𝛿𝛿 < 1 𝑓𝑓𝑓𝑓/ 𝐻𝐻𝐻𝐻 ) that it does not 
interfere with the 3He precession frequency measurement using the SQUID gradiometers.

• Less stringent than above and depends on the specific electrode and geometry of the sensors & 
electrodes.

• Bulk material:  𝜌𝜌𝑣𝑣 ∼ 10−6 Ω � 𝑚𝑚
• Utilized a new method based on F-D theorem and FEM analysis to determine magnetic noise from an 

arbitrary conductor geometry (Takeyasu Ito).

Copper:  𝜌𝜌𝑣𝑣 = 1.72 × 10−8 Ω � 𝑚𝑚
Aluminum: 𝜌𝜌𝑣𝑣 = 2.83 × 10−8 Ω � 𝑚𝑚
Acrylic:  𝜌𝜌𝑣𝑣 ~ 1014 Ω � 𝑚𝑚
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Present electrode candidates
Conductive coating: Cu-Ge coated PMMA

Bulk conductive material: Torlon-4435

Conductive coatings: ZrN & NbN 
on polycarbonate

Bulk conductive material: polycarbonate 
(Zelux CN-P)

LA-UR-23-32757 15



Breakdown probability for Cu-Ge PMMA

Data for Cu-Ge coated PMMA electrodes
Acquired in Small-Scale system

Extrapolation for Cu-Ge coated PMMA electrodes 
in nEDM experiment
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High voltage R&D supporting facilities

Half-Scale High Voltage 
Apparatus

MSR

He recovery bag Compressor

Cavallo

Liquid helium liquefaction plant

Liquid helium liquefaction plant
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Half-Scale High Voltage (HSHV) system

1/2-scale measurement cell 
electrodes

Central Volume 
(40 L, 1.8 K)

77 K thermal 
intercept

4 K thermal 
intercept

HSHV Rogowski (near-uniform field) 
electrodes & mounting structure

Commissioning completed 
(Erick Smith, Grant Riley)

Half-Scale High Voltage System:
• Enables testing of larger electrodes with more complex 

geometries.
• Verification of predictions from Small-Scale system
• Provides additional data on time to breakdown in addition 

to electrode area scaling.

HV chain
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Summary

• Developed a new data-based method to predict 
breakdown field with electrode area scaling for any 
electrode geometry.

• Demonstrated a clear connection between 
breakdown and field emission, and the dependence 
of breakdown field on pressure, surface condition.

• Provided guidance for the HV R&D of SNS nEDM 
experiment.  

• Approach is applicable to other noble liquid-based 
experiments.

• In preparation for testing of larger scale electrodes in 
Half-Scale HV system.

High voltage studies

• Developed a method based on F-D theorem and 
FEM analysis to determine magnetic noise from a 
general conductor geometry.

• Several electrode materials tested (resistivity & HV 
performance).  So far, at least one (Cu-Ge on 
PMMA) satisfies the requirements of the 
experiment.

• Some concerns regarding fabrication and 
performance (durability, robustness) remain.

• Other candidate materials have also been 
identified.  Testing/procurement in progress…

Electrode development
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END
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Stored energy in different HV systems Static field of ~3 uT inside measurement cells
• Must be uniform to ~ 10−4  (averaged over cell)
• Gradients:  < 10 pT/cm in direction of field, < 5 pT/cm perpendicular 

to field

Leakage current
• < 100 pA
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