Neutron spin transport for

Libertad Barrón-Palos Universidad Nacional Autónoma de México

INSTITUTO DE FÍSICA

NEUTRON BEAM TRANSPORT

RF ADIABATIC SPIN FLIPPER

NEUTRON BEAM TRANSPORT

TRANSITION INTO THE MAGNETICALLY CONTROLLED ENVIRONMENT

2019 JINST 14 P11017

TRANSITION INTO THE MAGNETICALLY CONTROLLED ENVIRONMENT

TRANSITION INTO THE MAGNETICALLY CONTROLLED ENVIRONMENT

SPIN ROTATION

SPIN ROTATION & TAPPER

SPIN ROTATION & TAPPER

SIMULATION OF AMBIENT FIELDS

- Only steel pole tips (for the permanent magnets) are modeled
- 5 G guiding vertical magnetic field between pole tips (produced by permanent magnets)
- Only a segment about 1/4 of the total length of the guide
- Separation between the end of the guide and the entrance of the MSE is about 2 m
- ► Two MSE walls with all the penetrations

EARTH'S MAGNETIC FIELD & COMPENSATION SYSTEM

Angle of the neutron beam to the magnetic north of 39.79°, with beam directed to the northeast.

- 3 coils to produce a vertical field and one to produce a diagonal field.
- Maintains magnetic fields < 30 µT on the outer surface of the MSE.

EARTH'S MAGNETIC FIELD & COMPENSATION SYSTEM

Magnetic Flux Density (µT)

- 3 coils to produce a vertical field and one to produce a diagonal field.
- Maintains magnetic fields < 30 µT on the outer surface of the MSE.

STEEL POLE TIPS EFFECT

LONGITUDINAL AND TRANSVERSE MAGNETIC FIELD GRADIENTS IN THE MEASUREMENT REGION

- ► 1 m³ volume in the measurement region
- magnetic field gradients required to be below 1 nT/m

LONGITUDINAL AND TRANSVERSE MAGNETIC FIELD **GRADIENTS IN MEASUREMENT REGION ENIRGION** $L_{i} = \frac{\partial}{\partial q_{i}} \left(B_{Earth_{i}} + B_{CSD,i} + B_{CSD,i} \right)$ $T_{i} = \frac{\partial}{\partial q_{i}} \left(B_{Earth_{j}} + B_{Earth_{k}} + B_{CSV,j} + B_{CSD,j} + B_{CSD,k} \right)$ Maximum in color range is 1 nT/m

SUMMARY

- ► Adiabatic RFSF design ✓
- Rotation and tapper of magnetic field to transition from beam guide into the measurement region - in progress
- Simulation of ambient fields and gradients in the measurement region
- Proper compensation of ambient field (steel pole tips) in progress

neutron spin transport and ambient fields for

VNIVERADAD NACIONAL AVENMA DE MEXICO

Thanks!

Simon Fraser University

TT

