Neutron Polarization and Transmission Measurement for the nEDM@SNS Experiment

Kavish Imam (simam@vols.utk.edu) nEDM2023 Workshop – Santa Fe November 8 2023

Overview

- Neutron Polarization and Transmission Measurements.
- ³He Polarimetry.
- Measurement Results.
- Small Angle Neutron Scattering Measurements.

Cryogenic Magnet & Associated Beam Windows

M.W. Ahmed et al., J. Inst. 14 P11017 (2019).

Polarization from ³He Transmission

- Very difficult to measure the cell parameters for high precision polarimetry.
- From hyperbolic identities the polarization of a monochromatic neutron beam analyzed by a ³He cell can be expressed in terms of neutron transmission measurements.

$$P_{n} = \frac{R - R_{sf}}{\sqrt{\left[\left(2\epsilon_{sf} - 1\right)R + R_{sf}\right]^{2} - 4\epsilon_{sf}^{2}}}$$
$$R = \frac{T}{T_{0}} R_{sf} = \frac{T_{sf}}{T_{0}} \epsilon_{sf} = \frac{1}{2} \left(1 - \frac{\frac{T^{AFP} - T}{T^{AFP} + T}}{\frac{T^{AFP} - T_{sf}}{T^{AFP} + T_{sf}}}\right)$$

G. L. Greene et. al, Nuc. Inst. Methods A 356 (1995)

Fundamental Neutron Physics Beamline-13

Determination of Neutron Polarization

$$P_n = \frac{R - R_{sf}}{\sqrt{\left[(2\epsilon_{sf} - 1)R + R_{sf}\right]^2 - 4\epsilon_{sf}^2}}$$

$$R = \frac{T}{T_0} , \ R_{sf} = \frac{T_{sf}}{T_0} \& \epsilon_{sf} = \frac{1}{2} \left(1 - \frac{\frac{T^{AFP} - T}{T^{AFP} + T}}{\frac{T^{AFP} - T_{sf}}{T_{sr}^{AFP} + T_{sf}}} \right)$$

- Neutron polarization can be determined by R and R_{sf} which simply represent ratios of transmissions through ³He analyzer.
- ³He polarization and the physical properties of the ³He cell do not need to be known to determine the neutron polarization.

G. L. Greene et. al, Nuc. Inst. Methods A 356 (1995).

Supermirror Neutron Polarizer

- The spin dependent refractive index of magnetized mirrors for neutrons of wavelength λ .
- One spin state is reflected while the other is absorbed.

$$n = \sqrt{1 - \left(\frac{Nb_{coh}}{\pi} \pm \frac{\mu B}{2\pi^2 \hbar^2}\right)\lambda^2}$$

- A gradient in the lattice spacing of the multi-bilayers results in a range of effective Bragg angles.
- Reflectivity extends beyond values expected for normal mirror reflections.

Balascuta et. al, Nuc. Inst. Methods A 671 (2012)

nEDM@SNS Pol./Trans. Measurement | Kavish Imam | nEDM2023 Workshop

F. Mezei, Z. Physik, 255 (1972) 146

Mezei-type Diabatic Spin Flipper

Diabatic field perpendicular to the guide field change to project the polarization direction of the beam onto any arbitrary field axis. ϕv

Useful for monochromatic beams i.e. fixed velocity.

I NEDM

Mezei-type Diabatic Spin Flipper

• Spin Flipper efficiency measurements at HFIR for 4.2 Å neutrons:

 $\epsilon_{SF} = 0.93 \pm 0.06_{stat}$

• And at the SNS for 8.9 Å:

 $\epsilon_{SF} = 0.92 \pm 0.03_{stat}$

Note:

- Spin flipping contrast is more robust at higher currents.
- The fringe pattern observed for 4.2 Å neutrons is twice as broad as the pattern observed for 8.9 Å neutrons.

"Neutator"-Guide Field Rotator

- Fix any depolarization from magnetic field misalignment or "zero-crossing" issues for incoming and outgoing neutron beam from cryo-magnet windows.
- Eliminate the need to rotate the spin flipper and provide the adiabatic rotation after the spin flipper.

In situ SEOP for ³He Spin Analyzer: Adiabatic Fast Passage

Performed 10 consecutive AFP flips with FID before and after and the AFP NMR loss came out to 0.053%

nĚDM

In situ SEOP for ³He Spin Analyzer: Neutron Transmission

State	Beam Polarization State	Analyzer Polarization State	N/s/MW
NO	Unpolarized	Not Present	4489
Tunpol	Unpolarized	Unpolarized	189
T _{pol}	Unpolarized	Polarized	263

$$T_{0} = N_{0}e^{-\chi}$$
$$T_{pol} = T_{0}cosh(\chi P_{He})$$
$$P_{n}^{He} = tanh(\chi P_{He})$$
$$\chi = \frac{0.073}{bar * cm * \mathring{A}} * P[bar] * l[cm] * \lambda[\mathring{A}]$$

 T_{unpol} or Cell Transmission = 4.2%

 $T_{pol}/T_{unpol} = 1.39$ ³He Cell Polarization: 27% Analyzing Power: 70%

Neutron Detector

- 8 pack of linear position sensitive ³He gas filled proportional counting detectors.
- Neutron time of flight and positional information.
- Accelerator provides proton t₀ for time of flight triggering and proton charge for beam power.
- Double ended resistive anode charge collection for event position info.

EDM

• Measured polarization upstream of the cryomagnet with the 3He neutron analyzer.

State	Beam Polarization State	Analyzer Polarization State	Neutrons/MW/s		
N ₀	Beam Right	Not Present	36.8 ± 0.6		
T ₀	Beam Right	Unpolarized	1.85 ± 0.04		
Т	Beam Right	Beam Right	3.57 ± 0.07		
T _{sf}	Beam Right	Beam Left	1.34 ± 0.03		
T_{sf}^{afp}	Beam Left	Beam Left	3.25 ± 0.06		
T ^{afp}	Beam Left	Beam Right	1.21 ± 0.03		
$P_n =$	$\frac{R - R_{sf}}{2} = 0.83 \pm 0.07_s$				
	$\sqrt{\left[(2\epsilon_{sf}-1)R+R_{sf}\right]^2-4\epsilon_{sf}^2}$				
$R = \frac{T}{T_0} R_{sf} = \frac{T_{sf}}{T_0}$					

- Measured polarization downstream of the cryomagnet with the 3He neutron analyzer.
- No significant neutron spin contrast was observed for various settings of the cryomagnet.
- The polarized neutron beam was fully depolarized by the nEDM cryomagnet as well as inefficient neutron spin transport field.
 - \bigcirc Bad neutron spin transport and μ -metal shield misalignment.

Transmission Measurement

Aperture

Intensity Upstream of the Cryomagnet

Intensity Downstream of the Cryomagnet

Transmission and Scattering

SANS Studies at HFIR GP-SANS

- Scattered neutrons counted as a function of $Q = \frac{4\pi}{\lambda} \sin 2\theta$ • Wavelength is fixed to 8.9Å ($\Delta\lambda/\lambda = 0.13$) and
- Wavelength is fixed to 8.9Å (Δλ/λ = 0.13) and vary θ (i.e Q) by moving the detector along the beam.
- Probe scale $d^{\sim} \lambda/\theta$ (small angle approx.)
- Angular resolution $\Delta \theta / \theta \propto a / L$.
- Measure the differential scattering cross section.
- Elastic coherent scattering of neutrons that gives rise to SANS.

Scattered

10

🖌 nĚDM

Transmission Measurements via SANS

- These measurements also showed that the beam intensity loss from these window materials was small and agreed with the expectation.
- A variation on the neutron beam intensity loss on the Metglas sample was due to neutron beam alignment issues.
 - Difficult to calculate expected loss due to uncertainty in the percent mass composition of the Boron.
- Neutron activation analysis for accurate determination of impurity levels and the mass composition of the window material.

Conclusions

- Measured a large 8.9Å neutron beam polarization loss from the cryomagnet.
 - A high accuracy polarization loss measurement couldn't be conducted due to minimal beam time.
 - Lack of polarization transport magnetic fields and misalignment of the cryomagnet are thought to be the primary culprits.
- Measured a large 8.9Å neutron beam intensity loss from the cryomagnet.
 - Scattering from beam windows due to a diverging beam.
 - Will repeat this study with apertures.
- These preliminary results demonstrate a proof of principle.
 - A new beamline was commissioned.
 - First neutron beam measurement for the nEDM@SNS Experiment.
 - ³He polarimetry components were successfully developed and tested.
- Need to systematically characterize the cause of depolarization and intensity loss before considering the effects on the final nEDM experiment.
 - \circ Can use polarized ³He in the final nEDM experiment to recover the polarization.

SNS Neutron Production Schedule

Oak Ridge National Laboratory Neutron Production Overview

The work presented is in part supported by U.S. D.O.E award number DE-FG02-03ER41258 and D.O.E Office of Science, WDTS-SCGSR program under contract number DE-SC0014664

nEDM@SNS Pol./Trans. Measurement | Kavish Imam | nEDM2023 Workshop

Back-up Slides

Other Systematic Effects

- Systematic effects are far smaller that the couple % level precision desired for these measurements.
 - \circ $\:$ Non-Poisson variations of the neutron beam
 - Previous experiments have shown a negligible effect.
 - $\circ ~~^3\text{He}$ cell polarization fluctuations:
 - In situ polarization for ³He negated this effect.
 - Moderator fluctuations:
 - No large variations in moderator properties were observed.
 - Humidity fluctuations:
 - Humidity is found to be constant based on literature.
 - Detector efficiency variations
 - Normal pulse height spectra showed no degradation of detector efficiency.

Results and Conclusion

$$\epsilon_{ST} * P_n \to P_n = \frac{1}{P_n^{He}} \left(1 - \frac{2R_{\uparrow}}{R_{\uparrow} + R_{\downarrow}} \right) = \frac{R_{\downarrow} - R_{\uparrow}}{\sqrt{(R_{\downarrow} + R_{\uparrow})^2 - 4}} = 51.36\% \pm 0.99\%$$
$$R = \frac{T}{T_0} \quad R_{sf} = \frac{T_{sf}}{T_0}$$

- A high accuracy measurement couldn't be conducted due to minimal beam time, .
 - Measured low beam polarization due the fact that the polarimetry components could not be optimized for 8.9Å neutrons.
 - Measured a low ³He analyzer polarization = 33% via neutron beam transmission method (should be 50-60%). Currently verifying this via beam independent method (EPR Spectroscopy).
- These preliminary results shows a proof of principle.
 - \circ A new beamline was commissioned.
 - First neutron beam measurement for the nEDM@SNS Experiment.

ıĚDM

I DEDM

³He Polarimetry with a Polarized Neutron Beam

The total analyzing power of the Polarizer, Spin flipper and ³He cell:

$$P_n P_3^{AP} \epsilon_{sf} = \frac{R_{\uparrow} - R_{\downarrow}}{R_{\uparrow} + R_{\downarrow}}$$

Neutron beam polarization as a function of relative neutron transmission measurements:

$$P_n = \frac{R - R_{sf}}{\sqrt{\left[(2\epsilon_{sf} - 1)R + R_{sf}\right]^2 - 4\epsilon_{sf}^2}}$$
$$R = \frac{T}{T_0} \quad R_{sf} = \frac{T_{sf}}{T_0}$$

G. L. Greene et. al, Nuc. Inst. Methods A 356 (1995).

Beam polarization* as the product of spin flipper efficiency, and the analyzing power of ³He cell, spin transport efficiency and polarizer efficiency:

$$\epsilon_{ST} * \epsilon_{SF} * P_n * P_n^{He} = \frac{R_{\uparrow} - R_{\downarrow}}{R_{\uparrow} + R_{\downarrow}}$$

Neutron beam polarization as a function of relative neutron transmission measurements:

$$P_{n} = \frac{R - R_{sf}}{\sqrt{\left[(2\epsilon_{sf} - 1)R + R_{sf}\right]^{2} - 4\epsilon_{sf}^{2}}}$$
$$R = \frac{T}{T_{0}} \quad R_{sf} = \frac{T_{sf}}{T_{0}} \quad \epsilon_{sf} = \frac{1}{2} \left(1 - \frac{\frac{T^{AFP} - T}{T^{AFP} + T}}{\frac{T^{AFP} - T_{sf}}{T^{AFP} + T_{sf}}}\right)$$

*Cannot separate spin transport efficiency with beam polarization.

Neutron Detector

- 8 pack of linear position sensitive ³He gas filled proportional detectors.
- Mobile detector cart from the SNS Detector group. (SNS nED DAQ system)
- Operating in Geiger mode for neutron counting.
- Accelerator provides proton t₀ for time of flight triggering and proton charge for beam power.

Detection efficiency across a tube diameter

EDM

Neutron Detector-Saturation?

- If the instantaneous neutron rate is too high, then one will saturate the detectors.
- Need to characterize this dead time inefficiency.
 - the DAQ dead time(The detector is set for a 750ns integration time, after which another integration could begin) but from charge transport within the gas itself
- May be able to see this in the pulse height distribution.

Previous Studies

Metglas polarisation measurements on SESAME at LENS

13th April 2014 S.R.Parnell, T. Wang, A.L.Washington and R.Pynn **Samples** - in approx. 9 G field for neutron spin transport

- A 2826 MB3 Low-Cobalt
- B 2605 S3A Low-Cobalt
- C 2605 SA1 Low-Cobalt
- D 2705 M High-Cobalt

Note two different parts of D were tested and gave the same results so material seems consistent

Some studies on superconducting Pb:-

W. Treimer et al., Polarized neutron imaging and three-dimensional calculation of magnetic flux trapping in bulk of superconductors. Phys. Rev. B **85**, (2012) 184522 https://doi.org/10.1103/PhysRevB.85.184522

Spin "gymnastics" Simulations

Integrating Bloch's equations to check for spin transport in the magnetic fields of the polarimetry components.

m

 S_{-}

 S_{γ}

Spin "gymnastics" Simulations

Integrating Bloch's equations to check for spin transport in the magnetic fields of the polarimetry components. $d\overrightarrow{S} \rightarrow \overrightarrow{Z}$

$$\frac{dS}{dt} = \gamma_n \overrightarrow{S} \times \overrightarrow{B}$$

Spin vs Position

Settings	Neutrons/s/MW
FCS* off, MSE** off	2.73 ± 0.01
FCS off, MSE off, flipper On	2.73 ± 0.01
FCS off, MSE off	2.73 ± 0.01
FCS off, MSE off, flipper On	2.71 ± 0.01
FCS off, MSE on	3.09 ± 0.01
FCS off, MSE on, flipper on	3.05 ± 0.01
FCS off, MSE on	3.03 ± 0.01
FCS off, MSE on (large current)	3.07 ± 0.02
FCS on, MSE on (large current), degauss mu-metal	2.99 ± 0.01
FCS on, MSE on (large current), degauss mu-metal, degauss metglas	3.02 ± 0.02
FCS on, MSE off , degauss mu-metal, degauss metglas	3.07 ± 0.02
FCS on, MSE off , degauss mu-metal, degauss metglas	3.10 ± 0.02

* Earth's Field Cancellation Coil System ** Magnetic Shield Enclosure Coil System

- No significant neutron spin contrast was observed for various settings of the cryomagnet.
- The polarized neutron beam was fully depolarized by the nEDM cryomagnet as well as inefficient neutron spin transport field.

- μ -metal shield was misaligned with the beam.
 - Polarized neutrons saw an effective diabatic magnetic field region.
- Guide field "dead zones" near μ -metal shield.