

Achieving ultra-low and -uniform magnetic fields with n2EDM

Efrain Segarra @ Paul Scherrer Institut

nEDM2023,

Nov 8, 2023

Magnetic field control for n2EDM

 B_0 field

Magnetically shielded room

Magnetic field control for n2EDM

 B_0 field

Magnetically shielded room

Today: magnetic environment ready for UCNs

The nEDM Collaboration, arXiv:2309.16877 (submitted)

The Magnetically Shielded Room (MSR)

The Magnetically Shielded Room (MSR)

MUMETALL®

The Magnetically Shielded Room (MSR)

MUMETALL®

• 6 permeable layers

• Shielding factor 10^5 at 0.01 Hz ($1\mu T \rightarrow 10pT$)

• Excitation coils to degauss permeable layers

Degaussing coils of MSR

• Layers 1-5 uses corner coils for each spatial direction

Degaussing coils of MSR

• Layers 1-5 uses corner coils for each spatial direction

• Layer 6 has distributed coils

Degaussing coils of MSR

• Layers 1-5 uses corner coils for each spatial direction

• Layer 6 has distributed coils

• Additional coils on the door

\rightarrow 100 coils in total

Previous degaussing procedure

- From outside MSR to inside
- Flux around x-, then y-, then z-axis (*serial*)

Previous degaussing procedure

- From outside MSR to inside
- Flux around x-, then y-, then z-axis (*serial*)
- 3.5 hours to degauss + 12 hours for thermal stability
- Residual magnetic field up to 600 pT

Can we improve this?

- From outside MSR to inside
- Flux around x-, then y-, then z-axis (*serial*)
- 3.5 hours to degauss + 12 hours for thermal stability
- Residual magnetic field up to 600 pT

Well we can generate flux simultaneously* in x-y-z

*In layer 6 (innermost) only

The nEDM Collaboration, arXiv:2309.16877 (submitted)

We can achieve huge improvements

- Reduces time to degauss (2.4 hours)
- Reduces equilibrium time (1.5 hours)
- Reduces residual field (< 300 pT)

The nEDM Collaboration, arXiv:2309.16877 (submitted)

Mapping the magnetic environment

Residual field after simultaneous degaussing

Residual field after simultaneous degaussing

 $^{|\}vec{B}_{\perp}|$: Average transverse field in each disk

The nEDM Collaboration, arXiv:2309.16877 (submitted)

Residual field after simultaneous degaussing

- Faster
- Less heat
- Bit more uniform
- Just as low residual

Do it twice: lower and more uniform residual field

The nEDM Collaboration, arXiv:2309.16877 (submitted)

Previous degaussing took 12 hours to relax

Previous degaussing

Previous degaussing took 12 hours to relax

 $B_{\rho}(\phi)$ at fixed z, ρ at different t

The nEDM Collaboration, arXiv:2309.16877 (submitted)

Double-simultaneous degaussing relaxes faster

The nEDM Collaboration, arXiv:2309.16877 (submitted)

Total residual field is more uniform and lower

The nEDM Collaboration, arXiv:2309.16877 (submitted)

Huge improvements with residual field in MSR

- Reduces time to degauss
- Reduces equilibrium time
- Lower residual field
- More uniform

How does B_0 look in this environment?

LPSC Grenoble

How does B_0 look in this environment?

LPSC Grenoble

Requirement for UCN depolarization $\sigma(B_z) < 170 \text{ pT}$

LPSC Grenoble

 $d_{n \leftarrow \mathrm{Hg}}^{\mathrm{false}} = \mathrm{Const} \cdot \left\langle \rho B_{\rho} \right\rangle$

LPSC Grenoble

$$d_{n \leftarrow \mathrm{Hg}}^{\mathrm{false}} = \mathrm{Const} \cdot \left\langle \rho B_{\rho} \right\rangle$$

$$\vec{B}(\vec{r}) = \sum_{l \ge 0} \sum_{m=-l}^{l} G_{l,m} \Pi_{l,m}(\vec{r})$$

$$d_{n \leftarrow \text{Hg}}^{\text{false}} \propto G'_3 + G'_5 + \cdots$$

LPSC Grenoble

$$d_{n \leftarrow \mathrm{Hg}}^{\mathrm{false}} = \mathrm{Const} \cdot \left\langle \rho B_{\rho} \right\rangle$$

$$\vec{B}(\vec{r}) = \sum_{l \ge 0} \sum_{m=-l}^{l} G_{l,m} \Pi_{l,m}(\vec{r})$$

$$d_{n \leftarrow \text{Hg}}^{\text{false}} \propto G'_3 + G'_5 + \cdots$$

Two approaches:

- Reproducible-enough field that we can correct offline
- Uniform-enough field that it's small without correction

LPSC Grenoble

$$d_{n \leftarrow \text{Hg}}^{\text{false}} = \text{Const} \cdot \langle \rho B_{\rho} \rangle$$

$$\vec{B}(\vec{r}) = \sum_{l \ge 0} \sum_{m=-l}^{l} G_{l,m} \Pi_{l,m}(\vec{r})$$

$$d_{n \leftarrow \text{Hg}}^{\text{false}} \propto G'_{3} + G'_{5} + \cdots$$
Two approaches:
Reproducible-enough field that that we can correct offline
Uniform-enough field that it's small without correction

LPSC Grenoble

 $3 \times 10^{-28} e \text{ cm}$

n2EDM has satisfied our B-field requirements

The nEDM Collaboration, arXiv:2309.16877 (submitted)

Thanks!

Efrain Segarra PSI Fellow III-3i

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 884104

MSR layers

Chamber	Layer	Thickness (mm)	Material
Outer	L1	3.75	MUMETALL
Outer	Al	8.00	Aluminum
Outer	L2	3.75	MUMETALL
Inner	L3	6.75	MUMETALL
Inner	L4	6.75	MUMETALL
Inner	L5	4.5	MUMETALL
Inner	L6	6.0	ULTRAVAC

MUMETALL: Ni 77%, Cu 4.5%, Mo 3.3%, Fe balance ULTRAVAC: Ni 81%, Mo 6%, Fe balance

0 Al (eddy shield) **ULTRAVAC® ■** • • • • • • • **I**• () 00000 01

The nEDM Collaboration, *Rev. Sci. Intrum.* (2022)

MUMETALL®

Distributed coils

MSR door & holes

- Holes on top
- Side holes for guides & pumping
- Many inner holes

The nEDM Collaboration, <u>Rev. Sci. Intrum. (2022)</u>

Coil electrical scheme

The nEDM Collaboration, <u>arXiv:2309.16877 (submitted)</u>

41

Degaussing the permeable material

- Rohrer amplifier (50V / 70A)
- AC magnetic field
- Saturate material
- Decrease amplitude to zero

Reaching saturation

Shielding factor

Shielding factor extraction

- Excitation coils produce sinlike field with 2 muT peak-topeak amp @ MSR center
- Pickup by QuSpin

Thermal relaxation inside MSR

Simultaneous degaussing improvement

- Serial degaussing: 4/6 faces are degaussed at once
- 2 faces can produce background field for the 4

n2EDM field requirements

Statistical requirements

1. Vertical uniformity.

Minimize neutron spin depolarization ($\propto \gamma_n \tau_c \sigma^2(B_z)$):

 $\sigma(B_z) = \sqrt{\langle (B_z - \langle B_z \rangle)^2 \rangle} < 170 \ pT$

2. Top-bottom resonance matching condition.

Keep Ramsey f_{RF} optimal for the two chambers:

 $|G_{10}| < 0.6 \, pT/cm$

Goal of magnetic field mapping:

Measure problematic G_{lm} and their reproducibility, to allow for either calculation or cancellation of generated errors.

Systematical requirements

Hg-induced false neutron EDM.

Minimize the error on d_n extraction:

 $d_{n \leftarrow Hg}^{\text{false}} < 3 \times 10^{-28} e.cm$

Non-uniform fields lead to a shift δf_{Hg} which affects d_n through $\mathcal{R} = f_n/f_{Hg}$. This effect scales with chamber size and magnetic gradients:

$$d_{n \leftarrow Hg}^{\text{false}} = \frac{\hbar |\gamma_n \gamma_{Hg}|}{2c^2} \langle \rho B_\rho \rangle$$

= $-\frac{\hbar |\gamma_n \gamma_{Hg}|}{8c^2} R^2 (G_{\text{TB}} + \hat{G}_3 + \hat{G}_5 + \hat{G}_7)$
Monitored online Offline mapping

B_0 -down uniformity

49

Magnetic mapper details

- low-noise Bartington MAG13 three-axis
- φ ∈ [−30,380].
- ρ ∈ [−5,76] cm
- z ∈ [-39.6,50] cm