

Disentangling physics beyond the Standard Model with EDMs

Emanuele Mereghetti

The 5th Workshop on Searches for a Neutron Electric Dipole Moment November 6^{th} , 2023, Santa Fe.

Introduction

The Standard Model of Particle Physics

- describes nature in a economic and elegant way
- validated over a wide variety of scales
- last missing ingredient was discovered at LHC, and looks SM-like

The matter-antimatter asymmetry

• why is there more matter than antimatter?

Sakharov conditions

- C and CP violation
- baryon number violation
- deviation from thermal equilibrium

$$\frac{n_B}{n_{\gamma}} = 6 \cdot 10^{-10}$$

The matter-antimatter asymmetry

$$\frac{n_B}{n_{\gamma}} = 6 \cdot 10^{-10}$$

• why is there more matter than antimatter?

Sakharov conditions

- C and CP violation
- baryon number violation
- deviation from thermal equilibrium
- \times yes, but not enough
- × not for $m_H = 125 \text{ GeV}$

Electric dipole moments

- signal of T and P violation (CP)
- insensitive to CP violation in the SM ٠
- BSM CP violation needed for baryogenesis •

neutron

$$\left. d_n \right|_{
m SM} \sim 10^{-32} \, e \, {
m cm} \qquad \ll$$

 $|d_n|_{\rm exp} < 1.8 \cdot 10^{-26} \, e \, {\rm cm}$

M. Pospelov and A. Ritz, '05; C. Y. Seng, '14;

nEDM Collaboration, '20

large window & strong motivations for new physics!

EDMs and BSM physics

- different systems crucial to pinpoint BSM
- need atomic, nuclear, hadronic theory to identify CPV at quark level
- need to correlate with flavor physics and LHC to identify BSM

CP violation in the SM(EFT)

CP violation in the SM(EFT)

• two CPV sources in SM

$$\mathcal{L}_{\rm CPV}^{(4)} = -\theta \frac{g_s^2}{64\pi^2} \varepsilon^{\alpha\beta\mu\nu} G_{\mu\nu} G_{\alpha\beta} + \bar{u}_L^i \left[V_{\rm CKM} \right]_{ij} \gamma^\mu d_L^j W_\mu$$

CP violation in the SM(EFT)

											/ ·	
X ³		φ^6 and $\varphi^4 D^2$		$\psi^2 \varphi^3$		(LL)(LL)			$(\bar{R}R)(\bar{R}R)$		$(LL)(I \bigcirc (\frac{V^2}{2})$	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^{3}$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\overline{l}_{p}e_{r}\varphi)$	Q_l	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r) \sim (\Lambda)$	
$Q_{\tilde{G}}$	$\int ABC \tilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{n\varphi}$	$(\phi^{\dagger}\phi)(\bar{q}_{p}u_{r}\tilde{\phi})$	$Q_{q}^{()}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(a_s + a_t)$	
Q_W	$\varepsilon^{IJK}W^{I\nu}W^{J\rho}W^{K\mu}$	QuD	$(\varphi^{\dagger}D^{\mu}\varphi)^{*}(\varphi^{\dagger}D_{\mu}\varphi)$	Q_{ds}	$(\phi^{\dagger}\phi)(\bar{q}_{0}d_{r}\phi)$	$Q_{q}^{(i)}$	$(\bar{q}_p \gamma_p \tau^I q_r)(\bar{q}_s \gamma^{\mu} \tau^I q_t)$	$Q_{\delta d}$	$(\bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{l\delta}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{d}_s \gamma^\mu d_t)$	
0	PIJKWIVWJPWKu		,	,	0.1702.117	$Q_{lq}^{(l)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{ex}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$	
~w	¥2.2					$Q_{lq}^{(l)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$	
	$\Lambda^+ \varphi^-$		ψ-λφ	- (1)	ψ-φ-υ			$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r)(\bar{u}_s \gamma^\mu T^A u_t)$	
$Q_{\varphi G}$	$\varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(l_p \sigma^{\mu\nu} e_r) \tau^i \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(a)}$	$(\varphi^{\dagger}iD_{\mu}\varphi)(l_{p}\gamma^{\mu}l_{r})$			$Q_{ad}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r)(\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{ad}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{d}_s \gamma^\mu d_l)$	
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi \tilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i D^{I}_{\mu} \varphi)(\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r})$					$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$	
$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I\mu\nu}$	$Q_{uG} = (\bar{q}_{\rho}\sigma^{\mu\nu}T^{A}u_{r})\tilde{\varphi}G^{A}_{\mu\nu}$		$Q_{\varphi e}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\overline{e}_{p} \gamma^{\mu} e_{r})$	$(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$			B-violating			
$Q_{\varphi \widetilde{W}}$	$\left(- \varphi^{\dagger} \varphi \widetilde{W}^{I}_{\mu\nu} W^{I\mu\nu} \right)$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \tilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\overline{q}_{p}\gamma^{\mu}q_{r})$	Q_{lo}	$(\tilde{l}_p^j c_r)(\tilde{d}_s q_t^j)$	$Q_{duq} = \varepsilon^{\alpha\beta\gamma}\varepsilon_{jk} \left[(d_p^{\alpha}) \right]$		$^{T}Cu_{r}^{\beta}][(q_{s}^{\gamma j})^{T}Cl_{t}^{k}]$		
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i \overleftrightarrow{D}^{I}_{\mu} \varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	$Q_{qu}^{(1)}$	$(\bar{q}_{p}^{j}u_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}d_{t})$	Q_{qqu}	$Q_{qqu} = \varepsilon^{\alpha\beta\gamma}\varepsilon_{jk} \left[(q_p^{\alpha j}) \right]$		$^{T}Cq_{r}^{\beta k}][(u_{s}^{\gamma})^{T}Ce_{t}]$	
$Q_{\varphi \overline{B}}$	$\left(\varphi^{\dagger} \varphi \widetilde{B}_{\mu\nu} B^{\mu\nu} \right)$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i \overrightarrow{D}_{\mu} \varphi)(\overline{u}_{p} \gamma^{\mu} u_{r})$	$Q_{qu}^{(8)}$	$(\bar{q}_{p}^{j}T^{A}u_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}T^{A}d_{t})$	$\Gamma^{A}d_{t}$ $Q_{qqq}^{(1)} = \varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\varepsilon_{mn} [(q_{l}^{0}$		$^{i})^{T}Cq_{r}^{\beta k}][(q_{s}^{\gamma m})^{T}Cl_{t}^{n}]$		
$Q_{\varphi WB}$	$\varphi^{\dagger}\tau^{I}\varphi W^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i \overset{\leftrightarrow}{D}_{\mu} \varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$	$Q_{lo}^{(1)}$	$(\bar{l}_{p}^{j}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}u_{t})$	$Q_{qqq}^{(3)}$	$Q_{qqq}^{(3)} = \varepsilon^{\alpha\beta\gamma} (\tau^I \varepsilon)_{jk} (\tau^I \varepsilon)_{mn} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right]$		$\left[Cq_r^{\beta k}\right]\left[(q_s^{\gamma m})^T Cl_t^n\right]$	
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger}\tau^{I}\varphi \widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\tilde{\phi}^{\dagger}D_{\mu}\phi)(\bar{u}_{p}\gamma^{\mu}d_{r})$	$Q_{lo}^{(3)}$	$(\bar{l}_{p}^{j}\sigma_{\mu\nu}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}\sigma^{\mu\nu}u_{t})$	Qdua	$\varepsilon^{\alpha\beta\gamma} \left[(d_p^{\alpha})^T C u_p^{\beta} \right]$		$[(u_s^{\gamma})^T Ce_t]$	

Grzadkowski et al. '10

• two CPV sources in SM

$$\mathcal{L}_{\rm CPV}^{(4)} = -\theta \frac{g_s^2}{64\pi^2} \varepsilon^{\alpha\beta\mu\nu} G_{\mu\nu} G_{\alpha\beta} + \bar{u}_L^i \left[V_{\rm CKM} \right]_{ij} \gamma^\mu d_L^j W_\mu$$

• 53 (1350) CP-even, 23 (1149) CP-odd dimension-6 operators ($O(v^2/\Lambda^2)$)

Buchmuller & Wyler '86, Weinberg '89, de Rujula et al. '91, Grzadkowski et al. '10 ...

number flavor-diagonal CPV operators still limited

CP-violation in SMEFT: Higgs-gauge operators

$$\begin{split} \mathcal{L} &= -g^2 C_{\varphi \tilde{W}} \varphi^{\dagger} \varphi \, \tilde{W}^{i}_{\mu\nu} W^{\mu\nu}_{i} - g^{\prime 2} C_{\varphi \tilde{B}} \varphi^{\dagger} \varphi \, \tilde{B}_{\mu\nu} B^{\mu\nu} - gg^{\prime} C_{\varphi \tilde{W} B} \varphi^{\dagger} \tau^{i} \varphi \, \tilde{W}^{i}_{\mu\nu} B^{\mu\nu} + \frac{C_{\tilde{W}}}{3} g \epsilon_{ijk} \tilde{W}^{i}_{\mu\nu} W^{\nu\rho}_{j} W^{k\,\mu}_{\rho} U^{\mu\nu}_{\rho} W^{k\,\mu}_{\rho} \\ &- g_s^2 C_{\varphi \tilde{G}} \varphi^{\dagger} \varphi G^{a}_{\mu\nu} \tilde{G}^{\mu\nu}_{\sigma} + \frac{C_{\tilde{G}}}{3} g_s f_{abc} \tilde{G}^{a}_{\mu\nu} G^{\nu\rho}_{b} G^{c\,\mu}_{\rho} \,, \end{split}$$

- $C_{\varphi \tilde{W}}$, $C_{\varphi \tilde{B}}$, $C_{\varphi \tilde{W}B}$ $C_{\tilde{W}}$ are CP-odd partners of operators contributing to EWPO
- $C_{\omega \tilde{W}B}$, $C_{\tilde{W}}$: anomalous $WW\gamma$ and WWZ couplings, WZ, WW production at LHC
- $C_{\varphi \tilde{W}}$, $C_{\varphi \tilde{B}}$, $C_{\varphi \tilde{W}B}$: Higgs production and decay ($h \rightarrow \gamma \gamma$, $h \rightarrow \gamma Z$, $h \rightarrow ZZ^*$, $h \rightarrow WW^* \dots$)
- $C_{arphi ilde{G}}$: corrections to $gg
 ightarrow h, \ h
 ightarrow gg$

Higgs-gauge operators

- induced at tree level in models with new vector bosons
- but more often at one loop

>2 families of vector-like fermions, vector-like fermions + scalars

J. de Blas, J. C. Criado, M. Pérez-Victoria, J. Santiago, '17; G. Guedes, P. Olgoso, J. Santiago, '23

• correlated with CP-even corrections to EW propagators

CP-violation in SMEFT: chiral-breaking bilinears

$$\mathcal{L} = \left(\varphi^{\dagger}\varphi\right) \left[\bar{q}_{L}C_{u\varphi}u_{R}\tilde{\varphi} + \bar{q}_{L}C_{d\varphi}d_{R}\varphi\right] \\ + \bar{q}_{L}\sigma^{\mu\nu}\left(C_{uG}G_{\mu\nu} + C_{uW}W_{\mu\nu} + C_{uB}B_{\mu\nu}\right)u_{R}\tilde{\varphi} + \bar{q}_{L}\sigma^{\mu\nu}\left(C_{dG}G_{\mu\nu} + C_{dW}W_{\mu\nu} + C_{dB}B_{\mu\nu}\right)d_{R}\varphi$$

• 6 flavor-diagonal non-standard quark Yukawas

directly testable in Higgs properties $pp \rightarrow tth, h \rightarrow bb, \ldots$

vector-like quarks, 2 Higgs doublet model ...

- often generated at tree-level
- 6 gluon + 6 photon + 6 Z quark dipole couplings typically arise at one-loop

CP-violation in SMEFT: Right-handed charged current & four-fermion operators

$$\mathcal{L} = ilde{arphi}^{\dagger} D_{\mu} arphi \, ar{u}_{R} \gamma_{\mu} \, [C_{arphi u d}] \, d_{R} o rac{v^{2}}{2} g \, ar{u}_{R} \gamma^{\mu} \, [C_{arphi u d}] \, d_{R} \, W_{\mu}$$

- gives rise to a right-handed CKM matrix, with 9 independent phases
- coupled with SM left-handed CKM \implies low-energy $\Delta F = 0$, $\Delta F = 1$ CP-violating processes

$$\mathcal{L} = \left[C_{quqd}^{(1)} \right]_{prst} \bar{q}_{Lp}^{i} u_{Rs} \, \bar{q}_{Ls}^{j} d_{Rt} + \left[C_{Qu}^{(1)} \right]_{prst} \bar{q}_{Lp} \gamma^{\mu} q_{Lr} \bar{u}_{Rs} \gamma_{\mu} u_{Rt} + \left[C_{Qd}^{(1)} \right]_{prst} \bar{q}_{Lp} \gamma^{\mu} q_{Lr} \bar{d}_{Rs} \gamma_{\mu} d_{Rt} + (1 \rightarrow 8)$$

• the scalar op. $C^{(1)}_{quqd}$ is always CP-odd, vector operators $p=t, \ r=s, \ p
eq r$

Right-handed charged current & four-fermion operators

Left-right symmetric model

• extend SM symmetry to $SU(2)_L \times SU(2)_R \times U_{B-L}(1)$

 \implies heavy gauge boson (W_R) and Higgs fields (H_0 , H^{\pm})

• induces $C_{\varphi ud}$ prop. to W_L - W_R mixing α ,

EDMs correlated with direct CPV in kaon decays (ϵ'/ϵ)

• and $C_{quqd}^{(1,8)}$, $C_{qd}^{(1,8)}$, $C_{qu}^{(1,8)}$ via heavy Higgs or W_R exchange

correlated with $\Delta F = 2$ observables Δm_{B_d} , Δm_{B_s} , ϵ_K

- CPV in SMEFT involves Higgs, heavy gauge bosons, and heavy quarks need to integrate them out!
- full one-loop matching between SMEFT and LEFT \checkmark

W. Dekens and P. Stoffer. '19

LL running in SMEFT and LEFT ✓

E. Jenkins, A. Manohar and M. Trott, '13, '14; + R. Alonso '14; E. Jenkins, A. Manohar and P. Stoffer, '19 **Tree level path:**

• applies to all operators with light fermions or gluons

gluon CEDM, light quark EDM, CEDM and Yukawa, RHCC & four-fermion

• might not be the most efficient path (e.g. when involving small SM couplings)

One loop path:

- applies to electroweak Higgs-gauge operators, four-fermion operators with 2 heavy quarks
- typical suppression 10⁻² 10⁻³
- e.g. $C_{_{\!\mathcal{O}}\tilde{W}}$, $C_{_{\!\mathcal{O}}\tilde{W}B}$, $C_{_{\!\mathcal{O}}\tilde{B}}$ and $C_{\tilde{W}} \Longrightarrow$ lepton & quark EDM @ 1 EW loop

$$\tilde{c}_{\gamma}^{(e,q)} \sim \left\{ 10^{-2} C_{\varphi \tilde{X}}, 10^{-3} C_{\tilde{W}} \right\}$$

- gluonic operators \implies qCEDM and gCEDM @ $\mathcal{O}(\alpha_s)$
- preserve link to other low-energy observables. E.g. $C_{\omega \tilde{W}B}$ and $C_{\tilde{W}}$ match on flavor-changing dipoles

correlations with $B o X_s \gamma$, $K_L o \pi^0 e^+ e^-$

Two loop paths:

- top dipoles \implies Higgs gauge \implies fermion dipoles
- sizable mixing of the t EDM and weak EDM onto eEDM

$$ilde{c}_{\gamma}^{(e)}\sim rac{lpha}{4\pi}rac{y_t^2}{(4\pi)^2}\log^2rac{\Lambda^2}{m_t^2} imes ilde{c}_{\gamma}^{(t)}\sim 10^{-4}\, ilde{c}_{\gamma}^{(t)}$$

V. Cirigliano, W. Dekens, J. de Vries, EM, '16; K. Fuyuto and M. R. Musolf, '17

Two loop paths:

- top dipoles \implies Higgs gauge \implies fermion dipoles
- sizable mixing of the t EDM and weak EDM onto eEDM

$$ilde{c}_{\gamma}^{(e)}\sim rac{lpha}{4\pi}rac{y_t^2}{(4\pi)^2}\log^2rac{\Lambda^2}{m_t^2} imes ilde{c}_{\gamma}^{(t)}\sim 10^{-4}\, ilde{c}_{\gamma}^{(t)}$$

V. Cirigliano, W. Dekens, J. de Vries, EM, '16; K. Fuyuto and M. R. Musolf, '17

• for light-quark Yukawa, two-loop path is more efficient than tree level

CPV in the SMEFT: EDMs vs high-energy

Tree level path. Right handed charged currents

- V. Cirigliano et al, '23
- RHCC are a popular explanation of tensions in β decay experiments
- pointing to new physics scale of $\Lambda \sim 10 \text{ TeV}$
- RHCC induce nEDM, Hg EDM and ϵ'/ϵ at tree level

 $\Lambda\gtrsim 200~TeV!$

One loop path. Higgs-gauge operators

V. Cirigliano, A. Crivellin, W. Dekens, J. de Vries, M. Hoferichter, EM, '19

- eEDM dominates single coupling analysis
- hadronic EDMs constrain 2 directions *d_n*, *d*_{Hg} and *d*_{Ra} largely degenerate
- need LEP, $B \rightarrow X_s \gamma$ or LHC to close free directions

strong correlations to avoid EDMs

Constraints on weak gauge-Higgs operators

- since then, a good number of dedicated CPV@LHC analyses came out with similar sensitivity $\Lambda \sim 100~GeV$
- HL-LHC can play a role to close free directions
- expect correlated signals in ZZ, $\gamma\gamma$, γZ

Two-loop path. Top dipole couplings

- γ and W dipole have sizable mixing with lepton EDMs
- strong constraints from eEDM, not affected by th. uncertainties
- free direction in \tilde{c}_{γ} - \tilde{c}_{Wt} plane closed by CPV in single top
- CP-even bounds typically a factor of 100 weaker than CP-odd

Two-loop path. CP-odd Yukawa couplings

- neutron EDM best probe of the imaginary part of u, d and s Yukawa couplings
- eEDM wins on heavy quarks
- nEDM probes light quark Yukawas as small as SM Yukawas (not directly accessible in any CP-even probe!)

The role of theory uncertainties: top-Higgs and Higgs-gluon operators

- affect gg
 ightarrow h, $pp
 ightarrow tar{t}$ and $pp
 ightarrow tar{t}h$
- naively, eEDM, nEDM and Hg outperform direct constraints
- · bounds depend strongly on treatment of the large hadronic uncertainties
- same conclusions for the $\bar{t}tg$ dipole interactions

need improved LQCD & nuclear theory calculations

EDMs in the Left-Right Symmetric Model

W. Dekens, L. Andreoli, J. de Vries, EM, F. Oosterhof, '21; M. J. Ramsey-Musolf and J. C. Vasquez, '21

EFT analysis easily generalized to models, e.g. Left-Right Symmetric Model

- \sim few TeVs direct limits on W_R , H
- EDMs & $\Delta F = 2$ at tree and 1-loop level
- cancellations in contribs. to $K \cdot \overline{K}$ oscillations \implies low-mass W_R still allowed
- "cancellation region" probed by next generation of EDMs, in particular atomic EDMs

Low-energy CPV and EWBG

- eEDM, nEDM put simplest EWBG models under pressure
- w. multiple CP phases, can evade EDM bounds and are testable in near future

K. Fuyuto, J. Hisano, E. Senaha, '15, K. Fuyuto, W.-S. Hou, E. Senaha, '19

identify signatures of EWBG at LHC and future colliders

Snowmass white paper arXiv:2203.10184, M. J. Ramsey-Musolf, '19

improve calculations of CP asymmetries

V. Cirigliano, C. Lee, S. Tulin, '11

Preliminary Summary

- 1. in a single coupling analysis, eEDM and nEDM dominate most of the flavor-diagonal CPV parameters in SMEFT
- 2. theory errors weaken the limits on some hadronic operators

t and b Yukawas and chromo-EDMs, pure glue operators

- 3. beyond single coupling, EDMs of course will leave free directions,
 - \dots but enforce correlations between different SMEFT coefficients

correlated signals in different probes needed to solve "inverse problem" \dots after we see one signal \dots

Patterns of CP violation at low-energy

Low-energy EFT for flavor-diagonal CPV

What's the max. amount of info we can extract from EDM experiments?

• in the leptonic and semileptonic sector

$$\begin{split} \mathcal{L} &= \frac{e}{2} m_{\ell} \tilde{c}_{\ell} \bar{\ell} \sigma^{\mu\nu} \gamma_{5} \ell F_{\mu\nu} - \frac{G_{F}}{\sqrt{2}} \left(\bar{\ell} \ell \bar{N} i \gamma_{5} (C_{P}^{(0)} + C_{P}^{(1)} \tau_{3}) N + \bar{\ell} i \gamma_{5} \ell \bar{N} (C_{S}^{(0)} + C_{S}^{(1)} \tau_{3}) N \right) \\ &\implies d_{e} \sim em_{e} \tilde{c}_{e} = 1.7 \cdot 10^{-22} (v^{2} \tilde{c}_{e}) e \,\mathrm{cm} \end{split}$$

• the dependence of $ilde{c}_\ell$, $C_P^{(0,1)}$, $C_S^{(0,1)}$ on SMEFT operators is well understood \checkmark

Low-energy EFT for flavor-diagonal CPV

What's the max. amount of info we can extract from EDM experiments?

• in the hadronic sector, at the single nucleon level we can generate $N\pi$ and $N\gamma$ couplings

$$\mathcal{L}^{N} = \bar{N} \left(\bar{d}_{n} \frac{1 - \tau_{3}}{2} + \bar{d}_{\rho} \frac{1 + \tau_{3}}{2} \right) \boldsymbol{\sigma} \cdot \mathsf{E}N - \frac{\bar{g}_{0}}{2F_{\pi}} \bar{N} \boldsymbol{\pi} \cdot \boldsymbol{\tau}N - \frac{\bar{g}_{1}}{2F_{\pi}} \pi_{3} \bar{N}N$$

- the isotensor coupling \bar{g}_2 is usually suppressed
- at the two-nucleon level, 5 S to P transitions $\Delta T = 0: C_{3S_{1}-1P_{1}}, C_{1S_{0}-3P_{0}}^{(0)}; \quad \Delta T = 1: C_{3S_{1}-3P_{1}}, C_{1S_{0}-3P_{0}}^{(1)}, \Delta T = 2: C_{1S_{0}-3P_{0}}^{(2)}$
- can be parameterized in terms of contact interactions or meson exchange couplings
 - 1. The relative importance of these couplings depends on chiral/isospin properties of CPV ops.
 - 2. Neutron, light-nuclei and atomic EDM experiments can identify these patterns
 - 3. The dependence of hadronic couplings on SMEFT operators is **not** well understood.

Neutron (and proton) EDMs

$$\frac{F_3(Q^2)}{2m_N} = d_N + S_N \frac{Q^2}{m_\pi^2} + \dots$$

- for isoscalar source, tree level and \bar{g}_0 loop of the same size (\bar{g}_1 suppressed)
- loop diagram control chiral log & momentum dependence

$$d_{n,p} = ar{d}_{n,p}(\mu) \mp e rac{g_A ar{g}_0}{(4\pi F_\pi)^2} \, \ln rac{\mu^2}{m_\pi^2}, \qquad S_n = \mp rac{1}{6} rac{e g_A ar{g}_0}{(4\pi F_\pi)^2}$$

• for all sources, $d_n \sim d_p$. The exact ratio requires Lattice QCD calculations.

Nucleon EDM matrix elements

† FLAG '21

* Pospelov and Ritz, '05, Haisch and Hala, '19

qEDM contributions are mediated by nucleon tensor charges

 $g_T^{(u)}$, $g_T^{(d)}$ known with < 10% from LQCD, $g_T^{(s)}$ more uncertain

• contributions from $\bar{\theta}$ term and hadronic operators has large and (uncontrolled) errors

Nuclear EDMs and Schiff moments

	$A_{\rm Schiff}$	α_n	α_p	<i>a</i> 0 (<i>e</i> fm)	a_1 (e fm)	<i>a</i> ₂ (<i>e</i> fm)
¹⁹⁹ Hg	$-(2.1\pm0.5)\cdot10^{-4}$	1.9 ± 0.1	0.20 ± 0.06	$0.13\substack{+0.5 \\ -0.07}$	$0.25\substack{+0.89 \\ -0.63}$	$0.09\substack{+0.17 \\ -0.04}$
¹²⁹ Xe	$-(0.33\pm0.05)\cdot10^{-4}$	-	-	$0.10\substack{+0.53 \\ -0.037}$	$0.076\substack{+0.55\\-0.038}$	
²²⁵ Ra	$7.7 \cdot 10^{-4}$	-	-	2.5 ± 7.5	-65 ± 40	14 ± 6.5
d	1	0.9	0.9	0	-0.100	0
³ He	1	0.9	0	-0.027	-0.079	-0.060
³ Н	1	0	0.9	0.027	-0.079	0.060

$$d_{A_X} = A_{\text{Schiff}} \left(\alpha_n d_n + \alpha_p d_p + a_0 \frac{\overline{g}_0}{F_\pi} + a_1 \frac{\overline{g}_1}{F_\pi} + a_2 \frac{\overline{g}_2}{F_\pi} \right)$$

- for light ions, the nuclear theory input is under control (at the $\sim 10\%$ level)
- for diamagnetic atoms, Schiff moment calculations have large nuclear theory errors
- the couplings $\bar{g}_{0,1}$ are poorly known!

Identifying Higgs-gauge couplings

- assume the 3 Higgs-gauge operators $C_{\varphi\tilde{B}}$, $C_{\varphi\tilde{W}}$ and $C_{\varphi\tilde{W}B}$ are active & and eEDM of $10^{-30}~e\,\mathrm{cm}$ is observed
- the combination

$$v^2 \left(C_{arphi ilde{B}} + 1.1 C_{arphi ilde{W}} - 2.3 C_{arphi ilde{W} B}
ight) \sim 10^{-6}$$

- if all the coefficients are of that size, no hadronic EDMs will be visible
- as they get larger, induce correlated signals in d_n , d_{Hg} and d_d

Identifying CP-odd Yukawa interactions

- assume the same eEDM signal is explained by non-standard t and b Yukawas
- if we neglect theory errors, clear prediction for d_n vs d_{Hg}

Identifying CP-odd Yukawa interactions

- assume the same eEDM signal is explained by non-standard t and b Yukawas
- if we neglect theory errors, clear prediction for d_n vs d_{Hg}
- but large theory uncertainties spoil the picture!
- a reduction of th. errors to 10% of the current would greatly help!

Identifying CP-odd Yukawa interactions

- assume the same eEDM signal is explained by non-standard t and b Yukawas
- if we neglect theory errors, clear prediction for d_n vs d_{Hg}
- but large theory uncertainties spoil the picture!
- a reduction of th. errors to 10% of the current would greatly help!

Identifying right-handed charged currents

- u d RHCC can explain Cabibbo anomaly
- eEDM is very small (two loop and light quark mass suppression)
- π -N contributions to nuclear and atomic EDMs enhanced
- an observation of d_n should lead to large expected deuteron EDM (or Hg and Ra)

Identifying right-handed charged currents

- u d RHCC can explain Cabibbo anomaly
- eEDM is very small (two loop and light quark mass suppression)
- π -N contributions to nuclear and atomic EDMs enhanced
- an observation of d_n should lead to large expected deuteron EDM (or Hg and Ra)
- but could lead to too large corrections to $\epsilon'/\epsilon!$

once again, important to reduce errors!

Lattice QCD calculations of nEDM. $\bar{\theta}$ term

- baseline for all nEDM calculations
- EDM from QCD $\bar{ heta}$ term extremely challenging

vanishing signal at small m_π , large excited state contamination, ...

- published results compatible with zero at $\sim 2\sigma$
- approaching $d_n \sim 10^{-3} \bar{ heta} \ e$ fm, size of "chiral log"

nEDM from dimension-6 operators

- preliminary results for qCEDM and gCEDM
- error still a factor of 5 larger than QCD sum rule estimate
- ongoing efforts on π -N couplings

Nuclear Schiff moments

- · need effort from nuclear theory community, with methods with different resolution scales
- tremendous advance of *ab initio* methods for β decays, $0\nu\beta\beta$, anapole moments
 - S. Pastore et al, '17; P. Gysbers et al, '19; A. Belley, et al, '20; Y. Hao, P. Navratil et al, '20; R. Wirth et al, '21
 - capabilities growing rapidly, and strong synergy with applications for "standard" NP

Conclusions

EDM are powerful probes of BSM physics, which might lead to discovery of BSM CP-violation

Disentangling BSM models requires:

- multiple EDM observations
- improved nuclear and hadronic theory input
- correlations with flavor and collider probes
- and with well motivated baryogenesis scenarios

very important for these communties to keep talking!

Backup

Higgs-gauge operators. LEP

- W polarization measurements at LEP2
- constrain anomalous $WW\gamma$ and WWZ couplings

$$ilde{\kappa}_Z = -0.12^{+0.06}_{-0.04} \qquad ilde{\lambda}_Z = -0.09^{+0.07}_{-0.07}$$

- can be mapped onto $\varphi^{\dagger}\varphi\tilde{W}B$ and $WW\tilde{W}$ SMEFT operators

 $\Lambda\sim 250-350~GeV$

sensitive to EW scale physics

CPV in Higgs couplings. Collider constraints

more and more SMEFT analyses of CPV at LHC coming out

ATLAS: 1905.04242, 2202.11382, 2208.02338, ... CMS: 1907.03729, 2110.11231, 2104.12152, ...

- Higgs-gauge couplings probed in WW, WZ, Higgs production and decay
- CPV-sensitive observables via angular correlations
- $\Lambda \lesssim 1-2$ TeV, larger sensitivity for loop-dominated processes

See A. Gritsan et al, 2104.12152, 2109.13363 and 2205.07715

Single top

ATLAS 2202.11382

• angular distribution allow to access triple correlation $ec{S}_t \cdot (ec{p}_\ell imes ec{p}_j)$

analogous to "D coefficient" in β decays

• $\Lambda \sim 1.4$ TeV with polarization observables alone

gg ightarrow h, $t\bar{t}$ and $t\bar{t}h$

• very sensitive to top couplings, at tree and loop level

gg ightarrow h, $t\bar{t}$ and $t\bar{t}h$

- very sensitive to top couplings, at tree and loop level
- gg
 ightarrow h loop suppressed in the SM \Longrightarrow strong constraints on $ilde{c}_{gg}$
- top dipole gets competitive constraints from $t\bar{t}$ and H processes
- $\mathcal{O}(1)$ non-standard top-Yukawas still allowed

Effective field theories for EDMs

1. correlate an EDM signal with colliders/high energy physics?

- hadronic uncertainties. Impact on interpretation of EDM exps.?
- nuclear uncertainties. Reliably predict EDMs of light/heavy nuclei?