

The ¹⁹⁹Hg co-magnetometer in the n2EDM experiment

Nov. 7. 2023, nEDM2023 workshop

Wenting Chen on behalf of nEDM collaboration

Principle of the ¹⁹⁹Hg co-magnetometer

How do ¹⁹⁹Hg atoms join the n2EDM experiment

¹⁹⁹Hg atoms precess in the same field as neutrons:

$$f_{\rm Hg} = \left| \frac{\gamma_{\rm Hg}}{2\pi} B_0 \right|$$

 \Rightarrow allows us to cancel the magnetic field drifts!

Use the ratio:

$$R_{\mp} = \frac{f_{\mathrm{n},\mp}}{f_{\mathrm{Hg}}} = \left|\frac{\gamma_{\mathrm{n}}}{\gamma_{\mathrm{Hg}}}\right| \mp \frac{|E|}{\pi\hbar f_{\mathrm{Hg}}}d_{\mathrm{n}}$$

Then extract

$$d_n = \frac{\pi \hbar < f_{\rm Hg} >}{2|E|} (R_+ - R_-)$$

Neutron frequency as a function of cycle number

C. Abel et al., Phys. Rev. Lett. 124, 081803 (2020).

How do ¹⁹⁹Hg atoms join the n2EDM experiment

¹⁹⁹Hg atoms precess in the same field as neutrons:

$$f_{\rm Hg} = \left| \frac{\gamma_{\rm Hg}}{2\pi} B_0 \right|$$

 \Rightarrow allows us to cancel the magnetic field drifts!

Use the ratio:

$$R_{\mp} = \frac{f_{\mathrm{n},\mp}}{f_{\mathrm{Hg}}} = \left|\frac{\gamma_{\mathrm{n}}}{\gamma_{\mathrm{Hg}}}\right| \mp \frac{|E|}{\pi\hbar f_{\mathrm{Hg}}} d_{\mathrm{n}}$$

Then extract

$$d_n = \frac{\pi \hbar < f_{\rm Hg} >}{2|E|} (R_+ - R_-)$$

R ratio is nearly free from the magnetic field drifts.

C. Abel et al., Phys. Rev. Lett. 124, 081803 (2020).

How do we extract $< f_{Hg} > ?$

Use UV laser to spin-polarize the ¹⁹⁹Hg atoms.

optical pumping of ¹⁹⁹Hg atoms

Extraction of $f_{\rm Hg}$ - optical pumping

Use UV laser to spin-polarize the ¹⁹⁹Hg atoms.

Absorb σ^+ -photon $\lambda = 253.7 \text{ nm}$ f = 2/3 f = 2/3 f = 2/3 f = 1/2 f = 1/2 f = 1/2 f = 1/2

 $m_F = -1/2$ $m_F = 1/2$

optical pumping of ¹⁹⁹Hg atoms

7

Pump beam

Pump beam into

polarization chamber

Extraction of $f_{\rm Hg}$ - Hg spin-flip

- Release the polarized atoms into precession chambers.
- Apply $\frac{\pi}{2}$ pulse to flip the ¹⁹⁹Hg spin by 90°.

Extraction of $f_{\rm Hg}$ - signal probing

Probe the free precession signal of ¹⁹⁹Hg atoms by UV laser.

Extraction of f_{Hg} - data analysis

Analyze the free precession data

Simulated photodiode signal probing the Hg spin precession

Hardware Status

Overview of the ¹⁹⁹Hg co-magnetometer

Double precession chamber stack

Polarization cell and interfaces

Hg cell test setup

One non-magnetic valve

Hg cell prototype

Optical Windows for laser

Hg test with the prototype

DAQ interface using a Hg cell prototype in Grenoble

Stabilization of the system

Challenges:

A long beam-path causes instability Need to lock to the resonance of ${}^{199}Hg 6{}^{1}S_{0} \rightarrow 6{}^{3}P_{1}$ transition

- \rightarrow 3 kinds of stabilization are essential!
 - Frequency locking
 - Position stabilization to avoid beam moving during measurement.
 - Power stabilization to avoid power drifts in signal probing.
- \rightarrow For stabilization we always need a feedback loop.

Frequency locking scheme

Use Doppler-free saturated spectroscopy with frequency modulation

A photo of the laser table

Feedback loop to the diode laser

Positioning stabilization

Power stabilization

Signal detection close to the shot-noise limit has been demonstrated.

Hg related systematics

Study on systematic effects

$$R_{\mp} = \frac{f_{\mathrm{n},\mp}}{f_{\mathrm{Hg}}} = \left|\frac{\gamma_{\mathrm{n}}}{\gamma_{\mathrm{Hg}}}\right| \mp \frac{|E|}{\pi\hbar f_{\mathrm{Hg}}} d_{\mathrm{n}} = \left|\frac{\gamma_{\mathrm{n}}}{\gamma_{\mathrm{Hg}}}\right| (1 \mp \delta_{\mathrm{nEDM}}^{\mathrm{true}})$$

$$R_{\mp} = \frac{f_{\mathrm{n},\mp}}{f_{\mathrm{Hg}}} = \left|\frac{\gamma_{\mathrm{n}}}{\gamma_{\mathrm{Hg}}}\right| (1 \mp \delta_{\mathrm{nEDM}}^{\mathrm{true}} \mp \delta_{\mathrm{Hg}\to\mathrm{nEDM}}^{\mathrm{true}} + \delta_{\mathrm{nEDM},\mp}^{\mathrm{false}} + \delta_{\mathrm{Hg}\to\mathrm{nEDM},\mp}^{\mathrm{false}} + \delta_{\mathrm{Hg}\to\mathrm{nEDM},\mp}^{\mathrm{false}} + \delta_{\pm}^{\mathrm{false}})$$

For the extraction of nEDM: $d_n = \frac{\pi \hbar \langle f_{Hg} \rangle}{2|E|} (R_+ - R_-) \Rightarrow$ some δ s will be canceled if $\delta_- = \delta_+$.

$v \times E$ effect

Dominant term $\delta_{\text{nEDM},m,\mp}^{\text{false}} + \delta_{\text{Hg}\rightarrow\text{nEDM},m,\mp}^{\text{false}}$ from the motional magnetic field:

$$\overrightarrow{B_m} = \vec{E} \times \vec{v} / c^2,$$

Which leads to a shift $\delta f = \delta f_{B^2} + \delta f_{BE} + \delta f_{E^2}$

- δf_{B^2} , relates to *B* only, identical in two chambers;
- $\delta f_{E^2} \propto E^2$, identical in two chambers if |E| unchanged;
- $\delta f_{BE} \propto E \partial_z B_z$
 - $\Rightarrow \delta_{\text{nEDM},m,\mp}^{\text{false}} + \delta_{\text{Hg}\rightarrow\text{nEDM},m,\mp}^{\text{false}} \text{ asymmetric when flipping } \vec{E} !$
 - $\Rightarrow \delta s$ goes to $d_{n \leftarrow Hg}^{false} \& d_n^{false}$
 - \Rightarrow false EDM to be studied by changing E, $\partial_z B_z$, B_0 .

A magic field to measure the nEDM G. Pignol, Physics Letters B 793 440-444 (2019)

Pseudo-magnetic field

Nuclear interaction between neutron and Hg nucleus results in a pseudo B-filed:

$$B^* = -\frac{4\pi\hbar}{\sqrt{3}\mathrm{m_n}\gamma_n}\mathrm{b_i}n_{\mathrm{Hg}}\boldsymbol{P}$$

Which then causes a relative shift of in R-ratio: $\delta_{psmag} = \pm \frac{2\hbar}{\sqrt{3}m_n f_n} \mathbf{b}_{\mathbf{i}} n_{\mathrm{Hg}} P_{||}$

Variable control:

- Variate $n_{\rm Hg}$ by changing the valve opening duration
- Reduce $P_{||}$ by optimizing the oscillating field in the spin-flipping stage

- We are implementing a ¹⁹⁹Hg co-magnetometer to correct the magnetic field drifts for the n2EDM experiment.
- The co-magnetometer works by probing the Larmor frequency of the polarized ¹⁹⁹Hg atoms.
- Challenges are the transportation of the laser beam over long distance, the beampath with non-magnetic optics inside MSR, and optimizing the relaxation time.
- Systematic effects resulting from Hg setup will be studied and controlled.

Thank you for your attention!

Laser frequency locking

Natural Hg absorption spectrum

Example of a Doppler-free peak (not ¹⁹⁹Hg)

Metallic Hg source

VACUUM FLANGE 2

Light absorption

The light absorption of Hg atoms:

$$\delta \Gamma = \delta \Gamma_0 + \vec{\mu} \cdot \delta \vec{\Gamma_1}, \quad \vec{\mu} = \gamma \vec{l} \text{ (nuclear magnetic dipole moment)}$$
Absorption cross-section is dependent on the angle of Hg spin and light propagation

Scalar absorption rate, corresponding to unpolarized light

Why does T2 exist

Transverse relaxation time T₂ in the equation: $A(t) = a e^{-\frac{t}{T_2}} sin(2\pi f_{Hg}t + \phi_0)$

Why T₂ exists?

$$\frac{1}{T_2} = \frac{1}{T_{mag}} + \frac{1}{T_{wall}} + \frac{1}{T_{light}}$$

 T_{mag} from inhomogeneity of magnetic field. T_{wall} due to collisions of atoms and chamber. T_{light} Hg are depolarized during light detection process.

(In this T₂ definition, we neglect the decay due to Hg leakage)

Laser frequency locking

We have tried two locking schemes:

Doppler-free saturated spectroscopy with frequency modulation

Sub-Doppler dichroic atomic vapor laser lock (SD-DAVLL) with magnetic field

Probe signal detection

• In the region of the 8Hz Hg precession frequency, the measured noise density is only a factor 1.5 away from shot noise.

Discharge cleaning

Spin relaxation rate comparison: before and after discharge cleaning. M. Fertl, ETH PhdThesis (20.500.11850/77320)

Pseudo-magnetic field

A shift of in R-ratio:
$$\delta_{psmag} = \pm \frac{2\hbar}{\sqrt{3}m_n f_n} \mathbf{b}_{\mathbf{i}} n_{\mathbf{Hg}} P_{\mathbf{i}\mathbf{i}}$$

- Thanks to the double chamber design, the 1^{st} order resulting Hg $P_{||}$ will be canceled out.
- Residual effect coming from the difference of $P_{||}$ (field inhomogeneity) and n_{Hg} in two chambers.

$v \times E$ effect

Dominant term $\delta_{\text{nEDM},m,\mp}^{\text{false}} + \delta_{\text{Hg}\rightarrow\text{nEDM},m,\mp}^{\text{false}}$ from the motional magnetic field: $\overrightarrow{B_m} = \overrightarrow{E} \times \overrightarrow{v} / c^2$,

Which leads to a shift $\delta f = \delta f_{B^2} + \delta f_{BE} + \delta f_{E^2}$

- δf_{B^2} , relates to *B* only, identical in two chambers;
- $\delta f_{E^2} \propto E^2$, identical in two chambers if |E| unchanged;
- $\delta f_{BE} \propto E \partial_z B_z$
 - $\Rightarrow \delta_{\text{nEDM},m,\mp}^{\text{false}} + \delta_{\text{Hg}\rightarrow\text{nEDM},m,\mp}^{\text{false}} \text{ asymmetric when flipping } \vec{E} !$
 - $\Rightarrow \delta s$ goes to $d_{n \leftarrow Hg}^{false} \& d_n^{false}$
 - \Rightarrow false EDM to be studied by changing E, $\partial_z B_z$, B_0 .

$$d_n^{\text{false}} = -\frac{\hbar v_h^2}{4c^2 B_0^2} G_{1,0}$$

= $-\frac{G_{1,0}}{1 \text{ pT/cm}} \times 1.65 \times 10^{-28} \text{ e cm},$
$$d_{n \leftarrow \text{Hg}}^{\text{false}} = \frac{\hbar |\gamma_n \gamma_{\text{Hg}}| R^2}{8c^2} G_{1,0}$$

= $\frac{G_{1,0}}{1 \text{ pT/cm}} \times 1.28 \times 10^{-26} \text{ e cm}$