

# Design Status of a New Research Reactor in Japan

nEDM2023 - The 5th Workshop on Searches for a Neutron Electric Dipole Moment 2023-11-07

<u>T. Higuchi</u>, M. Arai, M. Hino, M. Sugiyama, N. Sato, Y. Kawabata, Y. Abe, R. Nakamura

## **Research reactors in Japan**



## Background

#### • 2016.12: Decision by the government to build the new research reactor

• Decided decommission of Monju and construction of the new research reactor on the same site

#### 2017-2019: Government-led opinion survey

 Survey conducted by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) in an expert committee consisting of various stakeholders

#### • 2020.09: Baseline of the reactor defined, call for conceptual design

- <u>Medium-power (10 MW)</u> for wide applications from basic science to industrial uses
- Expected to contribute to the local community, be a core base in the western Japan for nuclear research and human resource development
- Public call by MEXT for conceptual design studies and related researches
- 2020.11: Conceptual design project started (JAEA, Kyoto U., U. Fukui)
- 2020.12 : JAEA selected to be a lead implementer of the project
- 2023.03 : Shifted to detailed design phase for application of installation license

## Medium thermal power selected

| Reactor Type                           | Zero<br>power | Low<br>power       | Medium<br>power | High<br>power   |
|----------------------------------------|---------------|--------------------|-----------------|-----------------|
| Thermal Output                         | < 10kW        | < 500kW            | < 10MW          | > 20MW          |
| <b>Reactor Physics Study</b>           | 0             | Х                  | Х               | Х               |
| Neutron Science                        | Х             | 0                  | 0               | 0               |
| Industrial Application                 | Х             | Х                  | 0               | 0               |
| Education                              | Scientist     | Operator           | Operator        | Operator        |
| Location Applicability                 | 0             | 0                  | 0               | Х               |
| Typical # of users<br>(persons x days) | KUCA<br>1,000 | UTR-KINKI<br>1,200 | KUR<br>5,400    | JRR-3<br>22,500 |

- Medium-power reactor (10MWth) was selected, which can be applied widely from academic to industrial application with a substantial number of users.
- Regulatory definition by the Nuclear Regulation Authority of Japan (based on IAEA): Medium power: 500 kW to 10,000 kW

## Timeline

FY2020~2022 Conceptual design Geological survey

#### FY2022~ Detailed design (including Basic design) Licensing and approvals from NRA

Construction works and Inspections Approvals from NRA

#### Operation

FY2020 FY2021 FY2022 FY2023 ~ Organization of utilization needs. Consideration of human Facility resource development, facility utilization management and utilization cooperation with local organizations management etc. Reactor core design **Detailed design** Conceptual Utilization facility design and (Basic design) Layout design 200 m borehole 100 m borehole investigation investigations Geological survey

## **Design policies**

#### Enhanced safety performance

- ✓ Minimize the potential hazard
- ✓ Multiplexing and diversification of safety functions

#### Economical design

- ✓ Apply existing and proven technologies
- $\checkmark\,$  Reduction of construction, operation, and maintenance costs

#### **Ensured operation stability (high operation uptime)**

- ✓ Minimize scrams, prevent troubles by design
- ✓ Simplify the maintenance to shorten inspection period

#### □ Improved user convenience

 Reasonable arrangement of user accessibility, easy handling of user equipment, and enhancement of available space



- Conventional and proven fuel assembly design
  - Conventional MTR-type fuel assembly to achieve economical design and short time of approval process
- Advanced and improved experimental facilities including the Cold Neutron Source (CNS) and peripheral facilities

## **Fuel element**

#### Standard MTR-type

- $\checkmark$  Standard fuel material with enrichment no higher than 20%
- ✓ Based on MTR-type fuel assembly of the existing research reactors (e.g. JRR-3, JMTR)



| Size                        |           | 76.2 $	imes$ 76.2 $	imes$ 1150 mm |  |
|-----------------------------|-----------|-----------------------------------|--|
| Nuclear Fuel                |           | U <sub>3</sub> Si <sub>2</sub>    |  |
| <sup>235</sup> U enrichment |           | Approx. 20 wt%                    |  |
| <sup>235</sup> U content    |           | Approx. 472 g                     |  |
| Uranium density             |           | 4.8 g/cm <sup>3</sup>             |  |
| Fuel<br>meat                | Thickness | 0.51 mm                           |  |
|                             | Width     | 62 mm                             |  |
|                             | Length    | 750 mm                            |  |
| Cladding                    |           | Aluminum alloy                    |  |
| Cladding thickness          |           | 0.38 mm                           |  |
| Fuel<br>plate               | Thickness | 1.27 mm                           |  |
|                             | Width     | 71 mm                             |  |
|                             | Length    | 770 mm                            |  |
| Number of coolant channel   |           | 20                                |  |
| Coolant channel thickness   |           | 2.35 mm (×20)                     |  |

Specification of JRR-3 fuel assembly

## Arrangement of irradiation holes (tentative)

#### Core configuration of irradiation holes

- ✓ Open pool-type reactor with a central core and heavy water reflector
- ✓ The core has 16 standard fuels, 4 control rods with follower fuels, and 5 irradiation holes in 5x5 grids.
- ✓ Large diameter (ϕ100mm) irradiation holes next to the fuel core.





## Arrangement of neutron beam lines (tentative)

#### • Arrangement plan of the Cold Neutron Source (CNS) and neutron beam

- ✓ Main objective : Utilization of neutron beams
- ✓ Advanced design for CNS
- $\checkmark$  Sufficient space to locate facilities and experimental devices in the reflector



T. Higuchi, Design Status of a New Research Reactor in Japan (nEDM2023)

# Simple simulations of the CNS moderator

- The first step of simulations with a simple geometry
  - 2 MeV fast neutrons from outside to the inside of the sphere
  - Moderator material Liq. D<sub>2</sub> (100% ortho) or Liq. H<sub>2</sub>(100% para)
  - Size of the sphere of  $D_2O$  + cold moderator fixed to 500 mm radius, swept moderator thickness



# **Prioritized neutron instruments**

#### Small-Angle Neutron Scattering Instrument

Neutron Diffraction Instrument Pneumatic

Analysis of forms and sizes of collective structure of atoms or molecules

**JRR-3 SANS-U** 

Crystal structure analysis

Neutron activity analysis instrument Analysis for microelement by non-radioactive assay

Ge

detector

**JRR-3 MINE** 



**Neutron Imaging Instrument** 

**JRR-3 TNRF** 

**Neutron Reflectometer** 

Structural analysis of materials interfaces and surfaces



KUR

tube

## **Future timeline**



## **Consortium of stakeholders**



#### 

Signing ceremony on May 8, 2023

#### **Role of Core Institutions**

(AEA) JAEA

• Design, installation and test operation

#### Kyoto University

Aggregation of wide-range applications and provision of services based on the experience of KUR operation

### University of Fukui

• Cooperation with local universities, research institutes, companies, etc. in Fukui

Steadily advance the project by the core institutions with consideration of wide range opinions from academia, industry, local organizations, etc.

## Acknowledgements

 MEXT-commissioned project: "Investigation on conceptual design and project management schemes for the new research reactor at the Monju site"





文部科学省

MEXT

MINISTRY OF EDUCATION, CULTURE, SPORTS, SCIENCE AND TECHNOLOGY-JAPAN

## How about UCN?



# Consideration for a UCN Source at the New Research Reactor

nEDM2023 - The 5th Workshop on Searches for a Neutron Electric Dipole Moment 2023-11-07

T. Higuchi, S. Kawasaki, K. Mishima

## The new research reactor status

- The current design efforts focused on the core and the core building ("detail design I")
  - Fuel arrangements, irradiation holes, # of extraction ports...
    - ightarrow these need to be fixed to apply for legal permission of the construction
- Everything downstream is still flexible!
  - Possibility of proposing new ideas during the long "detail design II"
- Reactor-based <u>UCN source</u> is under consideration



## **Boundary conditions**

- $sD_2$  or He-II ?  $\Rightarrow$  He-II
  - → sD<sub>2</sub> near the core is difficult (we don't want to make ambitious challenge around the core) We want not to delay the entire reactor due to the UCN source
- Arrangement of extraction ports:
  - Still flexible. The only thing we need to decide imminently is the size of the beam port

Our proposal:
 He-II UCN source with an advanced cold neutron optics



## Concepts

- Design neutron optics that has large solid-angle coverage by a high-m super mirror
  - Critical cold-neutron wavelength for UCN production: ~1 meV (0.9 nm)
  - Maximize the solid angle from the source for 0.9 nm neutrons by the use of high θc supermirrors



## Idea of the focusing optics

 By combination of mirrors that form θc to each other, angle up to 2θc from the source can be covered



figure made for  $\theta c = 10 \text{ deg}$ 

# **Simplistic estimates**

- Assumptions:
  - UCN production cross section at 1 meV: 1.5 μb
  - Cold neutron flux: 1.0×10<sup>10</sup> n/cm<sup>2</sup>/s/sr
  - Supermirror reflectivity:1
  - He-II volume: 350 L (Φ=30 cm,, L = 500 cm)
  - He-II density: 0.145 g/cm<sup>3</sup>
  - UCN lifetime: 100 s

#### **Expectation with m=5 supermirrors,**

- production rate: ~10<sup>7</sup> UCN/s
- source UCN density: ~ 1x10<sup>3</sup> UCN/cm<sup>3</sup>



# **Further considerations**

- In reality, the supermirror reflectivity decreases at a larger angle
- Radiation tolerance of supermirrors: test data acquired at PSI
- Temperature dependence of UCN production in He-II
  The core to He-II distance, heat load from the neutron flux, cryostat cooling power
- 3D arrangement of the UCN source and ports (higher position: preferrable for UCN experiments and reducing higher-energy neutrons)



Swiss Neutronics (https://www.swissneutronics.ch)



# Summary

- Opportunities at the new research reactor: most of the elements are still yet to be designed
- Possibility of a He-II UCN source with an advanced neutron optics:
  - Use supermirrors to maximize the solid angle coverage of 0.9-nm cold neutrons
  - Estimates with m=5 supermirrors  $\rightarrow 10^7$  UCN/s, 10<sup>3</sup> UCN/cm<sup>3</sup>
  - Technological improvement of multilayer mirror production may boost the production rate
- Interested?  $\rightarrow$  talk to me!

## Thank you for your attention!



## **Expected neutron flux**

- Thermal neutron flux target value: 10<sup>14</sup> n/cm<sup>2</sup>/s
- Cold neutron source at JRR-3 (LH2): not optimized (cold neutron flux lower by a factor of 2 than what should be expected from a thermal neutron flux)
- $\rightarrow$  By improved CNS, we expect to have a comparable cold-neutron flux to JRR-3

