

Development of high-performance UCN polarization analyzers at J-PARC and JRR-3

nEDM2023 - The 5th Workshop on Searches for a Neutron Electric Dipole Moment

2023-11-07

Takashi Higuchi (KURNS*, Kyoto Univ.) for the TUCAN collaboration and M. Hino

*KURRI \rightarrow KURNS (2018)

Outline

Introduction

- Principle
- Review of previous works
- Our motivations
- Test methods: UCN transmission measurement, cold-neutron reflectometry

Recent results

- UCN measurement at J-PARC
- Cold-neutron reflectometry measurement at JRR-3

Summary

Principle

UCN interaction with magnetic material:

 $V_{eff,\pm} = V_F \pm |\mu_n| \cdot \mathbf{B} = 209 \text{ neV} \pm 60 \frac{\text{neV}}{\text{T}} \cdot B$ (for Fe)

- Magnetized Fe films (~2 T) (V₊=329 neV, V₋=89 neV) \Rightarrow UCN polarizers
- Used together with spin flippers and detectors \Rightarrow UCN spin analyzers
- Fidelity of spin-state identification directly influences the visibility of the Ramsey fringes

Review of previous works

- State-of-the art performance: ≥ 0.90
- Sputtering vs vacuum deposition:
 - Sputtering became more common.
 - Advantages: strong adherence of film, thin layers possible (→ low absorption)
- Common substrates: Al or Si
- Magnetic field used: vary from ~10 mT to ~100 mT
 - In principle, fully magnetized films are fine
 - Can confirm the performance only after UCN measurement
 - Permanent magnet system required for high field
- Authors Fe thickness Magnetic field Polarization Mtehod Substrate (year) (mT) (nm) Ti (1.5 um) / Egorov et al. VD 200 p'=0.75 ? (1974)cover glass (100 um) Herdin et al. p = 0.95(2)/VD NaCl 150 / 300 60 (1978)0.98(3)Rogel (2009) VD/IBS Al foil (13-100 um) 200-1000 p=0.90 40 Lauer (2012) IBS Al foil 150 10 p=0.96 (3) p'= 0.90 (3), VD/IBS Hélaine (2014) Al foil (25 um) 400 120 0.91 (3) Baker et al. VD Si 1000 100 ? (2014)Zechlau (2016) MS Si 300 p'=0.96 (3) 10 15.3-128 Zechlau (2016) MS FeSi (supermirror) 10 p'=0.99 (2) (supermirror) Schreyer (2017) 150 MS Al foil (100 um) 27 p=0.960 (8)

VD: vacuum deposition IBS: ion-beam sputtering MS: magnetron sputtering

p, p': see next page

• We propose polarized cold neutron reflectometry as a test method of Fe films complementary to UCN tests

UCN transmission measurement

Matrix formalism

Basis:
$$|-\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ |+\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Polarizer/analyzer: $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ ideally: $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$
Detector: $D = \begin{pmatrix} 1 & 1 \end{pmatrix},$ SFs: $F_1 = \begin{pmatrix} \epsilon_1 & 1 - \epsilon_1 \\ 1 - \epsilon_1 & \epsilon_1 \end{pmatrix},$ $F_2 = \begin{pmatrix} \epsilon_2 & 1 - \epsilon_2 \\ 1 - \epsilon_2 & \epsilon_2 \end{pmatrix}$

R. Herdin et al. NIM A **148**, 353(1978)

• Experimental observables: (SF1, SF2)=(0,0), (0,1), (1,0), (1,1) \rightarrow <u>6 unknown parameters for 4 exp. configs</u>

$$N_{ij} = DA(F_2)^j (F_1)^i A \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad (i, j \in \{0, 1\})$$

Assumptions on A:

$$\begin{array}{c} \text{Herdin et al.} \\ A = \begin{pmatrix} a_{11} & 0 \\ a_{21} & 0 \end{pmatrix} \quad \Rightarrow p = \frac{a_{11}}{a_{11} + a_{21}} = \frac{N_{00} - N_{10}}{f_1 \cdot N_{00} + N_{10}}; \ f_1 = \frac{N_{11} - N_{10}}{N_{00} - N_{01}} \end{array}$$

• Egorov et al. $A = \begin{pmatrix} a_{11} & 0 \\ 0 & a_{22} \end{pmatrix} \ \Rightarrow p' = rac{a_{11}}{a_{11} + a_{22}} = \sqrt{p}$

J. Byrne, NIM A 167, 355 (1999) :

The assumption of Herdin et al.needs to different polarization vector amplitudes between polarizer (p) and analyzer (1).

The assumption of Egorov et al is more natural

 \Rightarrow UCN transmission experiment cannot fully distinguish different mechanisms of depolarization

UCN transmission measurement

Matrix formalism

Basis:
$$|-\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ |+\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Polarizer/analyzer: $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ ideally: $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$
Detector: $D = \begin{pmatrix} 1 & 1 \end{pmatrix},$ SFs: $F_1 = \begin{pmatrix} \epsilon_1 & 1 - \epsilon_1 \\ 1 - \epsilon_1 & \epsilon_1 \end{pmatrix},$ $F_2 = \begin{pmatrix} \epsilon_2 & 1 - \epsilon_2 \\ 1 - \epsilon_2 & \epsilon_2 \end{pmatrix}.$

- R. Herdin et al. NIM A **148**, 353(1978)
- Experimental observables: (SF1, SF2)=(0,0), (0,1), (1,0), (1,1) $\rightarrow 6$ unknown parameters for 4 exp. configs

$$N_{ij} = DA(F_2)^j (F_1)^i A \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad (i, j \in \{0, 1\})$$

• Assumptions on A:

$$\begin{array}{c} \text{\it Herdin et al.} \\ A = \begin{pmatrix} a_{11} & 0 \\ a_{21} & 0 \end{pmatrix} \quad \Rightarrow p = \frac{a_{11}}{a_{11} + a_{21}} = \frac{N_{00} - N_{10}}{f_1 \cdot N_{00} + N_{10}}; \ f_1 = \frac{N_{11} - N_{10}}{N_{00} - N_{01}} \end{array}$$

• Egorov et al. $A = \begin{pmatrix} a_{11} & 0 \\ 0 & a_{22} \end{pmatrix} \ \Rightarrow p' = rac{a_{11}}{a_{11} + a_{22}} = \sqrt{p}$

J. Byrne, NIM A 167, 355 (1999) :

The assumption of Herdin et al.needs to different polarization vector amplitudes between polarizer (p) and analyzer (1).

The assumption of Egorov et al is more natural

\Rightarrow UCN transmission experiment cannot fully distinguish different mechanisms of depolarization

Polarized cold-neutron reflectometry

- Early studies on the magnetic materials with cold neutrons
- Reflection on a non-collinear magnetic induction induces depolarization \rightarrow averaged over domains experienced by a neutron

$$\boldsymbol{P}=D(\boldsymbol{n},\,\varphi)\,\boldsymbol{P}_{0},$$

- Experiment with Fe₃₆Co₆₄ film:
 - Small applied magnetic field: low reflectivity, low polarization of reflected beam \rightarrow increased as the film magnetized

 $P_{z} = (R_{++} - R_{+-})/(R_{-+} + R_{+-}), R^{+} = R_{-+} + R_{++}$

VM. Pusenkov et al. J. Mag. Mag. Mat. 175 , 237 (1997)

NK. Pleshanov. Z. Phys, B 94, 233 (1994)

 \Rightarrow Give complementary information to the UCN measurement (in principle $\sim (1 - a_{22})$ of matrix A)

Our strategies

Production

- In-house ion-beam sputtering at KURNS M. Hino et al. NIM A 797,. 265 (2015)
- Substrate materials: Al (t 20–30 um) or Si(t 0.1–2.0 mm)
- Fe layer thickness: 100-300 nm

Testing

UCN transmission

 \rightarrow Pulsed UCN source at J-PARC

S. Imajo et al. PTEP **2016**, 013C22 (2016)

Cold neutron reflectometry (for Si substrate) \rightarrow JRR-3 MINE2 (λ =0.8 nm, $\Delta\lambda/\lambda$ =2.8% monochromatic)

UCN

H. Akatsuka et al. JPS Conf. Proc. 37, 020801 (2022)

Al and Si as substrate for Fe films

- Si: mirror-surface wafers available:
 - ightarrow can be characterized by cold-neutron reflectometry
- Al: can be made thin (~20 um) \rightarrow small absorption
 - Absorption for λ =58 nm (243 neV): Si 0.2 mm: 5.4%, Al 25 um: 1.2%
- B-H curve measurements by vibrating-sample magnetometry (VSM):

Fe on Si saturates more easily than Fe on Al: inverse magnetostriction effects (deformation induces magnetization)

	V _F (neV)	$\sigma_{_{abs}}$ (b) @ 2200 m/s			
AI	53.92	0.231			
Si	54.21	0.171			

Outline

Introduction

- Principle
- Review of previous works
- Our motivations
- Test methods: UCN transmission measurement, cold-neutron reflectometry

Recent results

- UCN measurement at J-PARC
- Polarized cold-neutron reflectometry measurement at JRR-3

Summary

Recent results from J-PARC pulsed UCN source

Setup:

- Doppler shifter produces UCNs every 120 ms
- Dipole electromagnets (up to 30 mT)
- Two AFP SFs

Samples:

- Fe (97 nm) on Al (25 um)
- Fe (97 nm) on Si (0.2 mm)

Results

Recent results from J-PARC pulsed UCN source

Setup:

- Doppler shifter produces UCNs every 120 ms
- Dipole electromagnets (up to 30 mT)
- Two AFP SFs

Samples:

- Fe (97 nm) on Al (25 um)
- Fe (97 nm) on Si (0.2 mm)

Results

Sample	H (mT)	р	p'
Fe on Si	6	0.78 (3)	0.88 (1)
Fe on Si	12	0.85 (3)	0.92 (1)
Fe on Si	30	0.86 (3)	0.93 (1)
Fe on Al	12	0.80 (2)	0.89 (1)

*BG neutron counts not fully accounted → would increase the polarization value finally

- Rise of *p* between 60 and 120 Oe for Si
- Higher p at 120 Oe of Si than Al (more field needed for Al)

Recent results from JRR-3 MINE2

- Test setup:
 - 0.88-nm neutrons polarized by a Fe/SiGe magnetic multilayer mirror to 0.97 polarization
 - O-2O scan with a rotation stage and a X stage
 - Up to 5.5 mT: used a Helmholtz coil (H)
 - 30 mT: used a magnetic mirror holder (M2)
- Sample:
 - Fe (97 nm) on Si (2 mm)
- Results:

Recent results from JRR-3 MINE2

- Test setup:
 - 0.88-nm neutrons polarized by a Fe/SiGe magnetic multilayer mirror to 0.97 polarization
 - O-2O scan with a rotation stage and a X stage
 - Up to 5.5 mT: used a Helmholtz coil (H)
 - 30 mT: used a magnetic mirror holder (M2)
- Sample:
 - Fe (97 nm) on Si (2 mm)
- Results:
 - Data with spin on/off simultaneous fitted with a model
 - The reflectivity in different applied magnetic fields

H (mT)	R ₀		
1.7	0.86 (6)		
2.5	0.87 (7)		
3.2	0.89 (7)		
5.5	0.88 (6)		
30	0.95 (9)		

15

Summary

- Introduced polarized cold-neutron reflectometry as a testing method of Fe films complementary to UCN transmission measurement
- Preliminary results imply that the magnetic field required to operate Si-substrate Fe film is larger than 5 mT as indicated by VSM
- Spin-analyzers for TUCAN EDM experiment: films with analyzing efficiency of 90% (12 mT) developed. Further evaluation & development planned

More details will be on: T. Higuchi et al. J. Phys. Soc. Jpn. (submitted)

Acknowledgements

JST-funded PhD position(s) available at Kyoto U.!

Thank you for your attention!

Backup

MINE2 polarized cold-neutron reflectometry

Fit model

$$R(q|q_{1,\pm}, q_2, d) = \begin{cases} 1 & (q < q_{1,\pm}) \\ \left| \frac{r_{10} - r_{12} \exp(iq_{1,\pm}d)}{1 - r_{12}r_{10} \exp(iq_{1,\pm}d)} \right|^2 (q \ge q_{1,\pm}) \end{cases}$$

with
$$r_{10} \equiv \frac{q - q_{1,\pm}}{q + q_{1,\pm}}, \ r_{12} \equiv \frac{q_2 - q_{1,\pm}}{q_2 + q_{1,\pm}}.$$
 (15)

$$q_{1,\pm} = \sqrt{q^2 - \frac{8m_n V_{\text{eff},\pm}}{\hbar^2}}, \ q_2 = \sqrt{q^2 - \frac{8m_n V_{\text{Si}}}{\hbar^2}}.$$

 $R(q|q_{1,\pm}, q_2, d)$ by

$$\begin{split} R_0 &= \frac{1+p_3}{2} R(q|q_{1,+},q_2,d) + \frac{1-p_3}{2} R(q|q_{1,-},q_2,d) \\ R_1 &= \frac{1-p_3}{2} R(q|q_{1,+},q_2,d) + \frac{1+p_3}{2} R(q|q_{1,-},q_2,d). \end{split}$$

$$\begin{aligned} \eta(q|q_{\rm th}) &= \begin{cases} q/q_{\rm th} \ (q < q_{\rm th}) \\ 1 \ (q \ge q_{\rm th}). \end{cases} \\ R'_0(q|q_{1,+}, q_{1,-}, q_2, q_{\rm th}, d, p, \rho) &= \\ \rho \eta(q|q_{\rm th}) \left[\frac{1+p_3}{2} R(q|q_{1,+}, q_2, d) + \frac{1-p_3}{2} R(q|q_{1,-}, q_2, d) \right], \end{aligned}$$
(18)
$$R'_1(q|q_{1,+}, q_{1,-}, q_2, q_{\rm th}, d, p, \rho) = \end{aligned}$$

$$\rho\eta(q|q_{\rm th}) \left[\frac{1-p_3}{2} R(q|q_{1,+},q_2,d) + \frac{1+p_3}{2} R(q|q_{1,-},q_2,d) \right].$$
(19)

MINE2 polarized cold-neutron reflectometry

Fit results

_	H (Oe)	$q_{1,+} (\mathrm{nm}^{-1})$	$q_{1,-} (\mathrm{nm}^{-1})$	$q_2 ({\rm nm}^{-1})$	$q_{\rm th} ({\rm nm}^{-1})$	<i>d</i> (nm)	ρ	<i>p</i> 3	χ^2/ndf
_	17	0.1275 (4)	0.2472 (1)	0.117 (3)	0.059(1)	96.5 (2)	0.855 (5)	0.935 (4)	855/123
	25	0.2470(1)	0.1225 (7)	0.109 (7)	0.052(1)	96.1 (2)	0.870 (6)	0.891 (5)	808/123
	32	0.2475 (1)	0.1255 (6)	0.110(7)	0.058 (1)	97.8 (2)	0.890 (6)	0.910 (4)	838/123
	55	0.2479 (1)	0.124 (2)	0.110 (2)	0.053 (2)	97.2 (2)	0.881 (5)	0.958 (4)	918/123
_	300	0.2445 (2)	0.1200 (5)	0.110 (4)	0.108 (2)	95.5 (3)	0.952 (9)	0.962 (4)	394/139

VM. Pusenkov et al. J. Mag. Mag. Mat. 175, 237 (1997)

$$\boldsymbol{P}=D(\boldsymbol{n},\,\varphi)\,\boldsymbol{P}_{0},$$

$$\begin{split} \varphi &= \varphi_{+} - \varphi_{-}, \\ \varphi_{+} &= 2 \arccos\{[E_{\perp}/V^{+}]^{1/2}\} \quad (E_{\perp} < V^{+}), \\ \varphi_{-} &= 2 \arccos\{[E_{\perp}/V_{g}]^{1/2}\} + 2k_{\perp}d \\ & (V^{-} < E_{\perp} < V_{g}). \end{split}$$

$$P_{z} = D_{zz} = \langle 1 - n_{x}^{2} (1 - \cos(\varphi)) \rangle.$$

$$m_{z} \equiv \langle n_{z} \rangle = \langle f(\chi) \cos(\chi) \rangle = \langle B_{z} \rangle / B,$$

$$\gamma_{x} \equiv \langle n_{x}^{2} \rangle = (1 - \langle f(\chi) \cos(2\chi) \rangle) / 2.$$

$$R^{+} = R_{-+} + R_{++} \cong \langle \cos^{2}(\chi/2) \rangle = \frac{1}{2} (1 + m_{z}), \quad (9a)$$

$$P_{z} \cong 1 - \frac{1}{2} \langle \sin^{2}(\chi) \rangle \langle \cos^{-2}(\chi/2) \rangle$$

$$= 1 - \gamma_{x} / (1 + m_{z}). \quad (9b)$$

Fig. 1. (a) The potentials of a magnetic film. (b) The experimental scheme. The directions of the quantisation axis (Z), the guide field (H), and the magnetic induction in the film (B) are shown; the coordinate system (x, y, z) is connected with the sample.

Fig. 4. A scheme of the neutron reflectometer ZINA.

J. Byrne, NIM A 167, 355 (1999)

- Introduced 3-dimensional polarization vector (<-> Stokes vector of light polarization)
- Re-formulate the transfer matrix in three-dimensional form, T: polarizer/analyzer, R: spin flipper

$$P_{0} = I, \quad P = P_{0} \langle \sigma \rangle = P_{0} p$$

$$P' = TP$$

$$p_{p} = \frac{T_{x0}}{T_{00}}, \quad \frac{T_{y0}}{T_{00}}, \quad \frac{T_{z0}}{T_{00}}, \quad p_{a} = \frac{T_{0x}}{T_{00}}, \quad \frac{T_{0z}}{T_{00}}, \quad \frac{T_{0z}}{T_{00}},$$

$$R = \begin{pmatrix} 1 & 0 \\ 0 & M \end{pmatrix}$$

$$P' = TRTP$$

$$P_{0}'(0, \phi) = C_{1} \text{ and } P_{0}'(\pi, \phi) = C_{2} \wedge$$

$$\frac{C_{1} - C_{2}}{C_{1} + C_{2}} = \frac{T_{z0} T_{0z}}{T_{00}^{2}} = p_{p} \cdot p_{a}.$$

The result [eq. (1)] of Egorev et al.²) follows immediately from the assumption $p_p \equiv p_a$ whereas the results of Herdin et al.²) hold only in the limit that p_a and p_p are parallel and that $|p_a| \equiv 1$. This implies that the active element, although an imperfect polarizer is yet a perfect analyser. Such a notion, although tenable in theory, seems somewhat unlikely in practice. Indeed one might comment that, since Herdin et al.¹) limit their discussion to a formulation in terms of 2×2 transfer matrices, effectively suppressing the x and y components of the polarization, the possible non-parallelism of p_a and p_p lies outside the range of their treatment.

Kim & Oliveria, J. Appl. Phys. 74, 1233–1241 (1993)

21

M. Prutton, Thin Ferromagnetic Films (Buttenvorths, London, 1964)