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TUCAN EDM Cell Specifications

• Double cell (eventually)

• 50 cm inner diameter

• 13-16 cm electrode separation 

• Compatible with 200 kV on 

central electrode

• 8.5 cm diameter guide 

entrances through ground 

electrodes

• Sufficiently non-magnetic parts 

to achieve systematic 

sensitivity

• Geometry and surface 

coatings compatible with 

achieving statistical sensitivity
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Surface Parameter Requirements

• Experiment optimization shows 
that coating quality impacts 
measurement time significantly

• S. Sidhu’s talk on statistical 
optimization

• Increase of W from 0.032 to 0.064 
neV adds ~100 days to our 
measurement time

• No DLC electrode coatings yet, so 
we are testing with NiP

• See A. Zahra’s and R. Mammei’s 
talks on DLC coatings 

 .   .   .   .   .   .  

 ma inar   ermi  otential    ne  

   

   

   

   

   

   

M
e
a
s
u
re
m
e
n
t 
ti
m
e
  
d
 

 i    ith d S               .     

d S   ith  i                .   

d     ith  i                .   



TUCAN EDM Cell Prototype

• Major UCN components only
• Not HV compatible

• No co-magnetometer windows or gas 
valve

• No other interfaces to other systems

• 50 cm ID, 13 cm electrode 

separation

• NiP coatings on aluminium 

“electrode”  lates

• NiP coating on UCN valve

• Deuterated-polystyrene coating 

on Rexolite (cross-linked 

polystyrene) insulators
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NiP "electrodes"

dPS insulator
Cell valve

Valve & prototype cell CAD model
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• Custom-built pneumatically-actuated UCN 
gate valve

• Integrated into the ground electrodes

• In open position: 2x 0.2mm slits

• Internal gate order of ~100 (mostly non-
magnetic – some to be replaced) parts

TUCAN EDM Cell Valve

Valve internal gate

Valve open position

Valve closed position

Gate open position Gate closed position
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Deuterated-Plastic Coating Facility

• “Rotational coatin ” of lar e insulator rin s 
with deuterated plastic coatings (5-10 um) 

• dPS coating on full-scale ring achieved 
early 2022

• dPE coatings have been successful at 
small-scale (10.16 cm ID) but not at full-
scale

Ring

Solution

1 rpm 

rotation

N2 flushing

(removes 

vapour)

Coating

Large ring room-temperature coating setup

Small-ring high-temperature coating setup
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Purpose

Characterize whether the cell prototype 

performs at the desired level for TUCAN EDM

Storage Lifetime Measurement at J-PARC MLF BL05

BL05: Neutron Optics and Fundamental Physics Prototype cell installed in BL05

BL05 Doppler 

Shifter

Prototype cell



J-PARC MLF BL05 Facility

• J-PARC MLF: home to one of 

the two most powerful spallation 

sources in the world (together 

 ith Oakrid e’s S S 

• BL05: cold neutron beamline 

equipped with Doppler-shifting 

turbine

• Top port and side port (out of 

page)

• Al protection foils

• ~90 VCN/UCN per second 

measured with a detector 

connected to side port
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1. UCN are filled into storage 
volume from Doppler shifter

2. UCN are stored for a variable 
time t

3. UCN are emptied into the 
detector

4. Resulting N vs t data yields a 
lifetime 𝜏 when fit to a decay 
function

Experiment Layout

3He detector 

(DUNia-10)

2-way 

rotary 

valve

Cell + cell valve

Doppler shifter

1. Fill

2. Store

3. Detect

~50 cm



Analysis Method
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• To understand these measurements in terms of our future EDM experiment, we are interested in the 
material parameters W & U, not the raw lifetime 𝜏. 

• Fit the data to an analytical formulation for storage lifetimes (previously used by W. Schreyer to analyze 
our NiP guides: 10.1016/j.nima.2023.168106)

https://doi.org/10.1016/j.nima.2023.168106


Analysis Method
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• To understand these measurements in terms of our future EDM experiment, we are interested in the 
material parameters W & U, not the raw lifetime 𝜏. 

• Fit the data to an analytical formulation for storage lifetimes

• Number of UCN N(t) after time t is

𝑁 𝑡 = න
𝐻𝑚𝑖𝑛

𝐻𝑚𝑎𝑥 𝑑𝑁

𝑑𝐻
exp −𝑡𝜏−1 𝐻 𝑑𝐻

Energy spectrum

Energy-dependent 

storage lifetime

Energy 𝐻 = 𝐸 + 𝑚𝑔𝑧
relative to bottom of cell



Analysis Method
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• To understand these measurements in terms of our future EDM experiment, we are interested in the 
material parameters W & U, not the raw lifetime 𝜏. 

• Fit the data to an analytical formulation for storage lifetimes

• Number of UCN N(t) after time t is

𝑁 𝑡 = න
𝐻𝑚𝑖𝑛

𝐻𝑚𝑎𝑥 𝑑𝑁

𝑑𝐻
exp −𝑡𝜏−1 𝐻 𝑑𝐻

• Lifetime depends on total energy H as

𝜏−1 𝐻 =

2𝐻
𝑚

4𝛾(𝐻)
න

𝑎

𝑏 𝐻 − 𝑚𝑔𝑧

𝐻
෍

𝑖

𝑑𝐴𝑖

𝑑𝑧
𝜇𝑖 𝐻 − 𝑚𝑔𝑧 𝑑𝑧 + 𝜏𝛽

−1

𝛾 𝐻 = න
𝑎

𝑏 𝑑𝑉

𝑑𝑧

𝐻 − 𝑚𝑔𝑧

𝐻
 𝑑𝑧

Differential volume

Differential area
Beta-decay lifetime

Energy-dependent loss 

rate for surface i



Analysis Method
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• To understand these measurements in terms of our future EDM experiment, we are interested in the 
material parameters W & U, not the raw lifetime 𝜏. 

• Fit the data to an analytical formulation for storage lifetimes

• Number of UCN N(t) after time t is

𝑁 𝑡 = න
𝐻𝑚𝑖𝑛

𝐻𝑚𝑎𝑥 𝑑𝑁

𝑑𝐻
exp −𝑡𝜏−1 𝐻 𝑑𝐻

• Lifetime depends on total energy H as

𝜏−1 𝐻 =

2𝐻
𝑚

4𝛾(𝐻)
න

𝑎

𝑏 𝐻 − 𝑚𝑔𝑧

𝐻
෍

𝑖

𝑑𝐴𝑖

𝑑𝑧
𝜇𝑖 𝐻 − 𝑚𝑔𝑧 𝑑𝑧 + 𝜏𝛽

−1

𝛾 𝐻 = න
𝑎

𝑏 𝑑𝑉

𝑑𝑧

𝐻 − 𝑚𝑔𝑧

𝐻
 𝑑𝑧

• μi is the energy-dependent loss probability

𝜇𝑖 𝐸 = 2 න
0

𝜋
2

1 −
𝐸 cos2(𝜃) − 𝐸 cos2 𝜃 − 𝑈 + 𝑖𝑊

𝐸 cos2(𝜃) + 𝐸 cos2 𝜃 − 𝑈 + 𝑖𝑊
cos 𝜃 sin 𝜃 𝑑𝜃

Surface material 

parameters



Doppler-Shifter Energy Spectrum

• Need to know 
𝑑𝑁

𝑑𝐻

• Doppler-shifter energy spectrum has only 

been measured from TOF

• Lack knowledge about the initial angular 

distribution

14

DS

3He det.
~0.5 m



Doppler-Shifter Energy Spectrum

• Search for initial energy spectra that can 

reproduce the TOF

• Fit PENTrack simulations of TOF 

measurement to obtain initial energy 

spectra, for different:
• Guide properties: imaginary Fermi potential, diffuse 

reflection probability

• Foil properties: real Fermi potential

• Angular distributions: collimated beam vs uniform 
distribution

• Fitting functions: Gaussian, skewed gaussian, 
Weibull

15

Initial Spectra



Doppler-Shifter Energy Spectrum

• Search for initial energy spectra that can 

reproduce the TOF

• Fit PENTrack simulations of TOF 

measurement to obtain initial energy 

spectra, for different:
• Guide properties: imaginary Fermi potential, diffuse 

reflection probability

• Foil properties: real Fermi potential

• Angular distributions: collimated beam vs uniform 
distribution

• Fitting functions: Gaussian, skewed gaussian, 
Weibull

• Propagate initial energy spectra to filled 

energy spectra using further simulations

• Use this range of possible filled energy 

spectra to analyze the lifetime data
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Storage Lifetime Results: NiP/NiP Cell

• Baseline: cell with NiP-coated ring 

instead of plastic ring

• Assumed 𝑈NiP = 213 neV

• Three separate measurements

1. 2022 Pre-baking 
𝜏 = 68.9 ± 2.7 s 
W = (0.17, 0.26) neV

2. 2022 Post-baking
𝜏 = 58.2 ± 1.7 s 
W = (0.22, 0.34) neV

3. 2023 No baking
𝜏 =138.4 ± 6.4 s, 
W = (0.059, 0.089) neV

• Final result is similar to our UCN 

production volume (but not as good 

as our best guides)

17

2023

2022

2022

Model

Model



Contamination of the Cell in 2022

• Baking the cell caused some 

unidentified liquid to appear in the 

guides.

• Hypothesis: low lifetime in 2022 was 

due to a high level of surface 

contamination from some source.

• Between 2022 and 2023 we re-cleaned 

every part in the cell and valve and 

replaced Buna-N O-rings with baked 

Viton O-rings.

• We did not definitively identify the 

source of the contamination.
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Storage Lifetime Results: NiP/dPS Cell

• dPS ring appears to outgas a lot

• Cell has no pumping connection when closed

• Effect can be removed:
1. Intentionally vary pressure by reducing pumping 

power

2. Determine pressure inside cell as a function of 
pressure outside cell

3. Treat counts as a function of pressure and storage 
time

𝑁 𝑃𝑓, 𝑃, 𝑡 = 𝑅
1

𝜏0
+

1

𝜏hole
+ 𝛼𝑃𝑓

−1

1 − 𝑒
−60

1
𝜏0

+
1

𝜏hole
+𝛼𝑃𝑖 𝑒

−𝑡
1

𝜏0
+𝛼𝑃
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Correction for valve being open
Pressure during filling

Average pressure during 

measurement

Without pressure compensation: 119.0 ± 3.8 s

True wall lifetime: 129.1 ± 4.6 s



Storage Lifetime Results: NiP/dPS Cell
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• Gray-shaded regions: analysis 

of NiP/dPS cell assuming full 

range of NiP-lifetimes from 

baseline
• Red outline: 2022

• Green outline: 2023

• Assumed 𝑈dPS = 161 neV

• Two measurements

1. 2022 (Post-NiP-baking)
𝜏 = 84.5 ± 1.5 s 
W = (0.050, 0.079) neV

2. 2023 No baking
𝜏 = 129.1 ± 4.6 s, 
W = (0.045, 0.069) neV

• Results both agree, and are on 

the higher side of our simulated 

range (0.032, 0.064)

2023

2022

Model (2023)

Model (2022)
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• Built a prototype EDM cell to test UCN valve and coatings for the TUCAN EDM 

experiment

• Had some challenges with cleanliness of the cell

• Results are not ideal, but suitable for achieving the TUCAN EDM target sensitivity 

according to optimization simulations

Summary

Sean Vanbergen
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