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Overview

In this talk, I will briefly describe
▶ How we simulate the TUCAN source and EDM experiment,
▶ How we compare different configurations,
▶ The estimated performance for our full experiment.

This work is summarized in my PhD thesis,
https://summit.sfu.ca/item/36485.
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Statistical sensitivity for Ramsey’s method

For Ramsey’s method, the statistical sensitivity is given by:

σ(dn) ≈
ℏ

2αdetTRamseyE
√
Ndet

▶ To improve the precision of the experiment is we must either increase:
the detected visibility (αdet),
the time they interact with the E field (TRamsey),
the strength of the electric field (E),
or the number of neutrons detected (Ndet).

▶ We have set our experimental requirements to reach a statistical sensitivity of
1× 10−27e·cm (1σ) in 400 measurement days. (Less than three calendar years.)

▶ Systematic studies will add additional days/years to obtain a final result.
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Maximize statistical sensitivity

▶ To maximize the statistical sensitivity of the experiment, I performed Monte Carlo
simulations with PENTrack – UCN tracking software.

▶ Models with different geometries were made with Solidworks.
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▶ Input values for Fermi potential, spin-flip probability, non-specular reflection probability
must be added (must be measured).

▶ A new model was created for every configuration change (geometry, material,
temperature), simulated, and analyzed.
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Metric of comparison

The sensitivity formula was adopted to analyze simulations by minimizing the total
measurement time for the experiment: the figure of merit used was the measurement time
required to reach 1× 10−27e·cm metric Tmeas.
The steps to calculate are:

1. calculate σ(dn) for one Ramsey cycle

2. calculate the total Ncycles needed to reach 1× 10−27e·cm

3. calculate the total Ncycles/day, (avg of 16 hr/day, all weekend and non-business hours M-F)

4. divide the total number of cycles required by the cycles per day

Tmeas =
Ncycles

Ncycles/day
.

5. The configuration which yields the shortest Tmeas is preferred.
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Operation of the TUCAN EDM experiment

▶ The experiment will have 4
different periods.

▶ To optimize, we run 3
different simulations.
(modularity)

▶ Varying these timings
changes the spectrum of
UCN energies at the end of
each period. (overloading)

▶ For each configuration,
Tmeas is minimized by
optimizing the timings
together.
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TUCAN MESA method

▶ We introduced this method and call it the TUCAN Modular Energy Spectrum Analysis
(MESA) method.

▶ Key point: the operational timings of the entire experiment must be optimized together.

Tmeas ∝
tcycle

α2
detE

2 T 2
Ramsey Ndet

,

where tcycle = tpre + tfill + TRamsey + tempty + constant operational timings.

This is because we are dealing with dependant variables,
e.g. A longer TRamsey decreases Ndet and αdet.
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Starting energy spectrum in the production volume

Mean 
Energy

▶ Total energy: H = Ekin + Vg + VB + VF .
▶ Starting simulated-spectrum of UCN in production volume.
▶ Vg = 0 at the center of the EDM cells. VF (He) = 18.5 neV.
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Filling of EDM cells

The energy spectrum of UCNs that fill the EDM cells. Vertical lines indicate mean energy.
This includes a tpre = 99 s.
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Storage in EDM cells

Energy spectrum of UCNs that survive in the EDM cells during the free precession. Vertical
lines indicate mean energy.
Assumed timings: tpre = 99 s, tfill = 99 s.
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Detection of UCN from EDM cells

The energy spectrum of UCN that are detected. Vertical lines indicate mean energy.
Assumed timings: tpre = 99 s, tfill = 99 s, tstorage = 100 s.
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Impact of optimization methods

Comparison of optimization methods for the same configuration:

Method tpre (s) tfill (s) TRamsey (s) tempty (s) Tmeas (d)
Filling only 0 62.5 140 100 451(14)

MESA method 15 111 181 51 296(9)

▶ Filling only: fit Nfilled(t) to 1− e−t/τfill and choosing tfill to be 2.5 filling lifetimes (∼ 90 %
maximal filling).

▶ Using TUCAN MESA method, which optimizes the entire experiment, results in a nearly
35 % shorter measurement time compared to the “filling only” method.

▶ This leads to a long tfill, TRamsey, and is biased towards lower-energy UCNs.
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Main results and outcomes

1. The operational timings of the entire experiment should be optimized together

2. Simulations indicate that our vacuum separation foil volume should be minimized
(resulting in a small diameter guide through our SCM and a ∼ 20% reduction in Tmeas)

3. Simulations indicate that the vertical drop to our detectors from the cells should be almost
double what we expected and a ∼ 35% reduction in Tmeas
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Estimated performance - assumptions

▶ Yoshiki B parameter of 0.0161 s−1K−7

▶ Temperature of He-II in HEX1: 1.1 K
▶ Model of heat transport in He-II: HEPAK
▶ Fermi potential of

▶ He-II: UF = (19 - i ℏ
2
BT 7) neV

▶ NiP: UF = (213− i0.07) neV
▶ dPS: UF = (171− i0.05) neV
▶ Al: UF = (54− i0.003) neV

▶ Lambert diffuse reflection probability of
▶ cryogenic region PL = 0.15
▶ room temperature guides PL = 0.03

▶ spin-flip prob. per wall bounce: 3× 10−5

▶ Total spin coherence lifetime T2 :> 800s
▶ Avg E-field in EDM cells of 12.5 kV/cm

Comparison of HEPAK and Van Sciver
parameterizations of the temperature profile in
He-II.

See our paper for details, https://doi.org/10.1051/epjconf/202328201015. 14
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Estimated performance

Description Value Comment
Production with valve closed 20 s Optimized timing
Filling with production 105 s Optimized timing
Ramsey time 188 s Optimized timing
UCN collection time 49 s Optimized timing
Source lifetime 19.2 ± 0.2 s with valve closed
Neutrons filled into cells 1.38± 0.02× 107

Corresponding density 213± 3 UCN/cc
EDM cell lifetimes 119± 4 s, 116± 4 s top and bottom
UCN detected 1.43± 0.02× 106

Detected visibility 0.60± 0.02
Sensitivity per cycle 1.94± 0.06× 10−25 ecm
Quiet time per day 16 h on avg excluding 7am to 6pm weekdays
Time to reach 10−27 ecm (1σ) 281± 16 days

15



For more details, please see my thesis,
https://summit.sfu.ca/item/36485
and our paper,
https://doi.org/10.1051/epjconf/202328201015.

Thank you.
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Sensitivity to He-II temperature
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Sensitivity to global parameters
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Source commissioning predictions
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Vertical drop to the detectors

▶ UCNs can be reflected off
the glass windows of the
UCN detectors: not
detected.

▶ Analytical calculations
indicate that the vertical
drop should be around
100 cm.

▶ Simulations indicate an
optimal of 180 cm, a ∼ 35%
reduction in Tmeas.

▶ My calculation assumes
specular reflections.
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Vertical drop to the detectors

▶ If we ignore non-specular (diffuse)
reflection, the analytical calculation should
be correct.

▶ Only specular reflection: vertical
momentum is conserved.

▶ Diffuse reflection: vertical momentum is
not conserved.
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SCM bore guide I

▶ The SCM polarizes UCNs.

▶ A vacuum separation foil is required
to keep the source clean.

▶ Adding the foil inside the SCM
increases the efficiency of UCN
transport through the foil.

▶ The diameter of the SCM bore guide
was varied.

VF (Al) = 54 neV
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SCM bore guide II

▶ A smaller diameter results in a
shorter Tmeas. There were still
large UCN losses in this region.

▶ Hypothesis: UCN are
accelerated towards the walls →
use different material.

▶ I simulated 58Ni coating on the
walls, the trend was the same.
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SCM bore guide III

▶ Simulations were performed to test,
▶ reducing strength of B,
▶ eliminating the B-field gradient (non-physical),
▶ eliminating the foil,
▶ reducing the thickness of the foil.

▶ With no foil, a small diameter does not yield a
shorter measurement time.

▶ The foil is the largest source of UCN loss.
▶ Conclusion: reduce the volume (diameter

and thickness) of the foil.
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